Multimode optically adiabatic silica glass submicron taper

Chang Kyun Ha, K. Nam, Myeong Soo Kang
{"title":"Multimode optically adiabatic silica glass submicron taper","authors":"Chang Kyun Ha, K. Nam, Myeong Soo Kang","doi":"10.21203/rs.3.rs-72988/v1","DOIUrl":null,"url":null,"abstract":"\n Silica nanofibers fabricated by tapering optical fibers have attracted considerable interest as an ultimate platform for high-efficiency light-matter interactions. While previously demonstrated applications relied exclusively on the low-loss transmission of only the fundamental mode, the implementation of multimode tapers that adiabatically transmit several modes has remained very challenging, hindering their use in various emerging applications in multimode nonlinear optics and quantum optics. Here, we report the first realization of multimode submicron tapers that permit the simultaneous adiabatic transmission of multiple higher-order modes including the LP02 mode, through introducing deep wet-etching of conventional fiber before fiber tapering. Furthermore, as a critical application, we demonstrate \"fundamental-to-fundamental\" all-fiber third-harmonic generation with high conversion efficiencies. Our work paves the way for ultrahigh-efficiency multimode nonlinear and quantum optics, facilitating nonclassical light generation in the multimode regime, multimode soliton interactions and photonic quantum gates, and manipulation of the evanescent-field-induced optical trapping potentials of atoms and nanoparticles.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-72988/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Silica nanofibers fabricated by tapering optical fibers have attracted considerable interest as an ultimate platform for high-efficiency light-matter interactions. While previously demonstrated applications relied exclusively on the low-loss transmission of only the fundamental mode, the implementation of multimode tapers that adiabatically transmit several modes has remained very challenging, hindering their use in various emerging applications in multimode nonlinear optics and quantum optics. Here, we report the first realization of multimode submicron tapers that permit the simultaneous adiabatic transmission of multiple higher-order modes including the LP02 mode, through introducing deep wet-etching of conventional fiber before fiber tapering. Furthermore, as a critical application, we demonstrate "fundamental-to-fundamental" all-fiber third-harmonic generation with high conversion efficiencies. Our work paves the way for ultrahigh-efficiency multimode nonlinear and quantum optics, facilitating nonclassical light generation in the multimode regime, multimode soliton interactions and photonic quantum gates, and manipulation of the evanescent-field-induced optical trapping potentials of atoms and nanoparticles.
多模光学绝热硅玻璃亚微米锥度
由变细光纤制成的二氧化硅纳米纤维作为一种高效光-物质相互作用的终极平台引起了人们的极大兴趣。虽然先前演示的应用仅依赖于基模的低损耗传输,但绝热传输多个模式的多模锥的实现仍然非常具有挑战性,阻碍了它们在多模非线性光学和量子光学中的各种新兴应用。在这里,我们首次实现了多模亚微米锥度,通过在光纤锥度之前引入传统光纤的深度湿蚀刻,该锥度允许多个高阶模式(包括LP02模式)同时绝热传输。此外,作为一个关键应用,我们展示了具有高转换效率的“基对基”全光纤三次谐波产生。我们的工作为超高效率的多模非线性和量子光学铺平了道路,促进了多模状态下的非经典光产生,多模孤子相互作用和光子量子门,以及对原子和纳米粒子的倏逝场诱导光捕获势的操纵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信