A Theory and an Algorithm of Approximate Gröbner Bases

Tateaki Sasaki
{"title":"A Theory and an Algorithm of Approximate Gröbner Bases","authors":"Tateaki Sasaki","doi":"10.1109/SYNASC.2011.12","DOIUrl":null,"url":null,"abstract":"In this paper, we treat polynomials with coefficients of floating-point numbers. The conventional concept of ideal breaks down for such polynomials, and we first define a concept of \"approximate ideal''. Then, introducing \"accuracy-guarding reductions'', we define approximate Groebner bases and give an algorithm for computing the approximate Groebner bases. We prove several theorems showing basic properties of approximate Groebner bases. The algorithm has been implemented, and we explain the approximate Groebner bases concretely by instructive examples.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we treat polynomials with coefficients of floating-point numbers. The conventional concept of ideal breaks down for such polynomials, and we first define a concept of "approximate ideal''. Then, introducing "accuracy-guarding reductions'', we define approximate Groebner bases and give an algorithm for computing the approximate Groebner bases. We prove several theorems showing basic properties of approximate Groebner bases. The algorithm has been implemented, and we explain the approximate Groebner bases concretely by instructive examples.
近似Gröbner基的理论与算法
在本文中,我们处理系数为浮点数的多项式。对于这类多项式,传统的理想概念被打破了,我们首先定义了“近似理想”的概念。然后,引入“精度保护约简”,定义近似Groebner基,并给出近似Groebner基的计算算法。我们证明了几个定理,证明了近似格罗布纳基的基本性质。该算法已实现,并通过实例具体说明了近似格罗布纳基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信