Threat Cost Based Multi-level Prediction D-star Algorithm

Huiheng Suo, Bosi Wei, Jian Wu, Xie-guang Ma, Tao Yang, Yaoyu Huang, Yicheng Lu, Xiushui Ma
{"title":"Threat Cost Based Multi-level Prediction D-star Algorithm","authors":"Huiheng Suo, Bosi Wei, Jian Wu, Xie-guang Ma, Tao Yang, Yaoyu Huang, Yicheng Lu, Xiushui Ma","doi":"10.38007/ijssem.2023.040213","DOIUrl":null,"url":null,"abstract":": In this paper, we propose a Multi-level Prediction D-star algorithm (MLP D-star) based on threat cost to address the path planning problem of mobile robots in local unknown environments. The algorithm improves the node expansion of the D-star algorithm using a multi-level prediction structure, which avoids excessive turning points in the planned path. The cost function of this algorithm incorporates threat cost and heuristic function to prevent the issue of path crossing obstacles. Simulation results demonstrate that the improved MLP D-star algorithm has advantages in terms of real-time performance, practicality of path results, safety, and computational efficiency.","PeriodicalId":131969,"journal":{"name":"International Journal of Social Sciences and Economic Management","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Sciences and Economic Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.38007/ijssem.2023.040213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: In this paper, we propose a Multi-level Prediction D-star algorithm (MLP D-star) based on threat cost to address the path planning problem of mobile robots in local unknown environments. The algorithm improves the node expansion of the D-star algorithm using a multi-level prediction structure, which avoids excessive turning points in the planned path. The cost function of this algorithm incorporates threat cost and heuristic function to prevent the issue of path crossing obstacles. Simulation results demonstrate that the improved MLP D-star algorithm has advantages in terms of real-time performance, practicality of path results, safety, and computational efficiency.
基于威胁代价的多级预测d星算法
针对移动机器人在局部未知环境中的路径规划问题,提出了一种基于威胁代价的多级预测d -星算法(MLP d -星)。该算法利用多级预测结构改进了D-star算法的节点展开,避免了规划路径中过多的拐点。该算法的代价函数结合了威胁代价和启发式函数来防止路径穿过障碍物的问题。仿真结果表明,改进的MLP D-star算法在实时性、路径结果的实用性、安全性和计算效率等方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信