{"title":"Formalization of Evidence: A Comparative Study","authors":"Pei Wang","doi":"10.2478/v10229-011-0003-7","DOIUrl":null,"url":null,"abstract":"Formalization of Evidence: A Comparative Study This article analyzes and compares several approaches of formalizing the notion of evidence in the context of general-purpose reasoning system. In each of these approaches, the notion of evidence is defined, and the evidence-based degree of belief is represented by a binary value, a number (such as a probability), or two numbers (such as an interval). The binary approaches provide simple ways to represent conclusive evidence, but cannot properly handle inconclusive evidence. The one-number approaches naturally represent inconclusive evidence as a degree of belief, but lack the information needed to revise this degree. It is argued that for systems opening to new evidence, each belief should at least have two numbers attached to indicate its evidential support. A few such approaches are discussed, including the approach used in NARS, which is designed according to the considerations of general-purpose intelligent systems, and provides novel solutions to several traditional problems on evidence.","PeriodicalId":247142,"journal":{"name":"Journal of Artificial General Intelligence","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial General Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/v10229-011-0003-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Formalization of Evidence: A Comparative Study This article analyzes and compares several approaches of formalizing the notion of evidence in the context of general-purpose reasoning system. In each of these approaches, the notion of evidence is defined, and the evidence-based degree of belief is represented by a binary value, a number (such as a probability), or two numbers (such as an interval). The binary approaches provide simple ways to represent conclusive evidence, but cannot properly handle inconclusive evidence. The one-number approaches naturally represent inconclusive evidence as a degree of belief, but lack the information needed to revise this degree. It is argued that for systems opening to new evidence, each belief should at least have two numbers attached to indicate its evidential support. A few such approaches are discussed, including the approach used in NARS, which is designed according to the considerations of general-purpose intelligent systems, and provides novel solutions to several traditional problems on evidence.