MotifGP: Using multi-objective evolutionary computing for mining network expressions in DNA sequences

Manuel Belmadani, M. Turcotte
{"title":"MotifGP: Using multi-objective evolutionary computing for mining network expressions in DNA sequences","authors":"Manuel Belmadani, M. Turcotte","doi":"10.1109/CIBCB.2016.7758133","DOIUrl":null,"url":null,"abstract":"This paper describes and evaluates a multi-objective strongly typed genetic programming algorithm for the discovery of network expressions in DNA sequences. Using 13 realistic data sets, we compare the results of our tool, MotifGP, to that of DREME, a state-of-the-art program. MotifGP outperforms DREME when the motifs to be sought are long, and the specificity is distributed over the length of the motif. For shorter motifs, the performance of MotifGP compares favourably with the state-of-the-art method. Finally, we discuss the advantages of multi-objective optimization in the context of this specific motif discovery problem.","PeriodicalId":368740,"journal":{"name":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2016.7758133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes and evaluates a multi-objective strongly typed genetic programming algorithm for the discovery of network expressions in DNA sequences. Using 13 realistic data sets, we compare the results of our tool, MotifGP, to that of DREME, a state-of-the-art program. MotifGP outperforms DREME when the motifs to be sought are long, and the specificity is distributed over the length of the motif. For shorter motifs, the performance of MotifGP compares favourably with the state-of-the-art method. Finally, we discuss the advantages of multi-objective optimization in the context of this specific motif discovery problem.
MotifGP:利用多目标进化计算挖掘DNA序列中的网络表达式
本文描述并评价了一种用于发现DNA序列中网络表达式的多目标强类型遗传规划算法。使用13个真实的数据集,我们将我们的工具MotifGP的结果与最先进的程序DREME的结果进行比较。当要寻找的基序较长时,MotifGP优于DREME,并且特异性分布在基序的长度上。对于较短的motif, MotifGP的性能优于最先进的方法。最后,我们讨论了多目标优化在这一特定主题发现问题中的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信