Intra-Prediction Side-Information Reduction Based on Gradient Boundary

Lucas Nissenbaum, Mumin Jin, J. Lim
{"title":"Intra-Prediction Side-Information Reduction Based on Gradient Boundary","authors":"Lucas Nissenbaum, Mumin Jin, J. Lim","doi":"10.1109/DCC.2019.00055","DOIUrl":null,"url":null,"abstract":"Recent developments in intra-prediction show the advantage of increasing the number of prediction directions. This trend can be observed in most previous standards, and should remain in the future. However, increasing the number of intra-prediction directions incurs a non-negligible side-information bit-rate. To reduce this side-information bit-rate, we propose a method to adaptively decide whether to use a larger or smaller set of candidate intra-prediction directions by simply evaluating the maximum gradient magnitude, theoretically motivated by the prediction inaccuracy model. In this scenario, we can achieve most of the gain from using the larger intra-prediction direction set while only requiring a small amount of side-information. This method yields a significant BD-rate reduction on multiple resolutions of images using fixed block-size when implemented in a simplified HEVC-based encoder.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent developments in intra-prediction show the advantage of increasing the number of prediction directions. This trend can be observed in most previous standards, and should remain in the future. However, increasing the number of intra-prediction directions incurs a non-negligible side-information bit-rate. To reduce this side-information bit-rate, we propose a method to adaptively decide whether to use a larger or smaller set of candidate intra-prediction directions by simply evaluating the maximum gradient magnitude, theoretically motivated by the prediction inaccuracy model. In this scenario, we can achieve most of the gain from using the larger intra-prediction direction set while only requiring a small amount of side-information. This method yields a significant BD-rate reduction on multiple resolutions of images using fixed block-size when implemented in a simplified HEVC-based encoder.
基于梯度边界的预测内侧信息约简
内部预测的最新发展显示了增加预测方向数量的优势。这种趋势可以在大多数以前的标准中观察到,并且应该在未来继续存在。然而,增加内部预测方向的数量会导致不可忽略的侧信息比特率。为了降低这种侧信息比特率,我们提出了一种方法,通过简单地评估最大梯度幅度来自适应地决定是否使用更大或更小的候选内预测方向集,理论上是由预测误差模型驱动的。在这种情况下,我们可以通过使用更大的内部预测方向集来获得大部分增益,同时只需要少量的侧信息。当在简化的基于hevc的编码器中实现时,该方法在使用固定块大小的多个分辨率的图像上产生显着的bd率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信