Exploiting approximate adder circuits for power-efficient Gaussian and Gradient filters for Canny edge detector algorithm

Julio de Oliveira, L. Soares, E. Costa, S. Bampi
{"title":"Exploiting approximate adder circuits for power-efficient Gaussian and Gradient filters for Canny edge detector algorithm","authors":"Julio de Oliveira, L. Soares, E. Costa, S. Bampi","doi":"10.1109/LASCAS.2016.7451089","DOIUrl":null,"url":null,"abstract":"This paper proposes the exploration of approximate adders for the implementation of power-efficient Gaussian and Gradient filters for Image Processing. The Gaussian filter is a convolution operator which is used to blur images and to remove noise. On the other hand, the Gradient of an image measures how it is changing. Both blocks can be designed in hardware using only shifts and additions. In this work we exploit a set of approximate adders in order to implement energy-efficient filters. The tree of adders of Gaussian and Gradient filters are implemented using one RCA-based approximate adder, as well as an Error-Tolerant Adder ETAI. The approximate architectures are compared to the best precise implementation of the filters. As the Gaussian and Gradient blocks are part of the Canny edge detector algorithm, we have implemented the adder trees of the filters aiming this application. Our main results show that for an efficient power realization of this algorithm, the best strategy consists in the implementation of the Gaussian filter with ETA I adder, and the Gradient filter with the RCA-based adder.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7451089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes the exploration of approximate adders for the implementation of power-efficient Gaussian and Gradient filters for Image Processing. The Gaussian filter is a convolution operator which is used to blur images and to remove noise. On the other hand, the Gradient of an image measures how it is changing. Both blocks can be designed in hardware using only shifts and additions. In this work we exploit a set of approximate adders in order to implement energy-efficient filters. The tree of adders of Gaussian and Gradient filters are implemented using one RCA-based approximate adder, as well as an Error-Tolerant Adder ETAI. The approximate architectures are compared to the best precise implementation of the filters. As the Gaussian and Gradient blocks are part of the Canny edge detector algorithm, we have implemented the adder trees of the filters aiming this application. Our main results show that for an efficient power realization of this algorithm, the best strategy consists in the implementation of the Gaussian filter with ETA I adder, and the Gradient filter with the RCA-based adder.
利用近似加法器电路为高效的高斯和梯度滤波器的Canny边缘检测器算法
本文提出探索近似加法器来实现用于图像处理的高能效高斯滤波器和梯度滤波器。高斯滤波器是一种用于模糊图像和去除噪声的卷积算子。另一方面,图像的梯度测量它是如何变化的。这两个块都可以在硬件中设计,只使用移位和添加。在这项工作中,我们利用一组近似加法器来实现节能滤波器。使用一个基于rca的近似加法器和一个容错加法器ETAI实现高斯滤波器和梯度滤波器的加法器树。将近似结构与滤波器的最佳精确实现进行了比较。由于高斯和梯度块是Canny边缘检测器算法的一部分,我们针对该应用实现了滤波器的加法树。我们的主要结果表明,为了有效地实现该算法的功率,最佳策略是实现带有ETA I加法器的高斯滤波器,以及带有基于rca的加法器的梯度滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信