{"title":"Single image Super Resolution by no-reference image quality index optimization in PCA subspace","authors":"Brian Sumali, H. Sarkan, N. Hamada, Y. Mitsukura","doi":"10.1109/CSPA.2016.7515828","DOIUrl":null,"url":null,"abstract":"Principal Component Analysis (PCA) has been effectively applied for solving atmospheric-turbulence degraded images. PCA-based approaches improve the image quality by adding high-frequency components extracted using PCA to the blurred image. The PCA-based restoration process is similar with conventional single-frame Super-Resolution (SR) methods, which perform SR process by improving the edges portion of low-resolution images. This paper aims to introduce PCA-based restoration to solve SR problem with additive white Gaussian noise. We conducted experiments using standard image database and show comparative result with the latest deep-learning SR approach.","PeriodicalId":314829,"journal":{"name":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2016.7515828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Principal Component Analysis (PCA) has been effectively applied for solving atmospheric-turbulence degraded images. PCA-based approaches improve the image quality by adding high-frequency components extracted using PCA to the blurred image. The PCA-based restoration process is similar with conventional single-frame Super-Resolution (SR) methods, which perform SR process by improving the edges portion of low-resolution images. This paper aims to introduce PCA-based restoration to solve SR problem with additive white Gaussian noise. We conducted experiments using standard image database and show comparative result with the latest deep-learning SR approach.