Recommender systems and the amplification of extremist content

J. Whittaker, Seán Looney, Alastair Reed, Fabio Votta
{"title":"Recommender systems and the amplification of extremist content","authors":"J. Whittaker, Seán Looney, Alastair Reed, Fabio Votta","doi":"10.14763/2021.2.1565","DOIUrl":null,"url":null,"abstract":": Policymakers have recently expressed concerns over the role of recommendation algorithms and their role in forming “filter bubbles”. This is a particularly prescient concern in the context of extremist content online; these algorithms may promote extremist content at the expense of more moderate voices. In this article, we make two contributions to this debate. Firstly, we provide a novel empirical analysis of three platforms’ recommendation systems when interacting with far-right content. We find that one platform—YouTube—does amplify extreme and fringe content, while two—Reddit and Gab—do not. Secondly, we contextualise these findings into the regulatory debate. There are currently few policy instruments for dealing with algorithmic amplification","PeriodicalId":219999,"journal":{"name":"Internet Policy Rev.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Policy Rev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14763/2021.2.1565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

: Policymakers have recently expressed concerns over the role of recommendation algorithms and their role in forming “filter bubbles”. This is a particularly prescient concern in the context of extremist content online; these algorithms may promote extremist content at the expense of more moderate voices. In this article, we make two contributions to this debate. Firstly, we provide a novel empirical analysis of three platforms’ recommendation systems when interacting with far-right content. We find that one platform—YouTube—does amplify extreme and fringe content, while two—Reddit and Gab—do not. Secondly, we contextualise these findings into the regulatory debate. There are currently few policy instruments for dealing with algorithmic amplification
推荐系统和极端主义内容的放大
政策制定者最近对推荐算法的作用及其在形成“过滤气泡”方面的作用表示担忧。在网络极端主义内容的背景下,这是一个特别有先见之明的担忧;这些算法可能会以牺牲更温和的声音为代价,促进极端主义内容。在这篇文章中,我们对这场辩论做出了两点贡献。首先,我们对三个平台的推荐系统在与极右内容交互时进行了新颖的实证分析。我们发现一个平台——youtube——确实放大了极端和边缘的内容,而reddit和gabb这两个平台却没有。其次,我们将这些发现置于监管辩论的背景下。目前处理算法放大的政策工具很少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信