Automated blog feedback prediction with Ada-Boost classifier

Md Taufeeq Uddin
{"title":"Automated blog feedback prediction with Ada-Boost classifier","authors":"Md Taufeeq Uddin","doi":"10.1109/ICIEV.2015.7334002","DOIUrl":null,"url":null,"abstract":"Automated analysis of social media documents has a tremendous impact in our day to day life since we extensively use social media to share our thoughts, feelings, tastes etc. However, the automatic social media analysis is still a very challenging task due to the massive amount of social media documents as well as the uncontrolled, dynamic and rapidly-changing content of social media documents. To automate social media analysis, this paper presents an automatic feedback prediction model based on novel Ada-Boost learning algorithm for blog documents considering realistic scenario. In this approach, an Ada-Boost classifier is applied to the numerous features extracted from crawled blog document to predict whether someone comments on a blog document or not in the next 24 hours of its publication in blogs. The evaluation results of the experiments conducted on the publicly available benchmark blog feedback data set indicate that the proposed technique is efficient both in terms of feedback prediction accuracy and computational time; the proposed approach yielded the maximum feedback prediction rate of 91.4%.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automated analysis of social media documents has a tremendous impact in our day to day life since we extensively use social media to share our thoughts, feelings, tastes etc. However, the automatic social media analysis is still a very challenging task due to the massive amount of social media documents as well as the uncontrolled, dynamic and rapidly-changing content of social media documents. To automate social media analysis, this paper presents an automatic feedback prediction model based on novel Ada-Boost learning algorithm for blog documents considering realistic scenario. In this approach, an Ada-Boost classifier is applied to the numerous features extracted from crawled blog document to predict whether someone comments on a blog document or not in the next 24 hours of its publication in blogs. The evaluation results of the experiments conducted on the publicly available benchmark blog feedback data set indicate that the proposed technique is efficient both in terms of feedback prediction accuracy and computational time; the proposed approach yielded the maximum feedback prediction rate of 91.4%.
自动博客反馈预测与Ada-Boost分类器
社交媒体文档的自动分析对我们的日常生活产生了巨大的影响,因为我们广泛地使用社交媒体来分享我们的想法、感受、品味等。然而,由于社交媒体文档的数量庞大,以及社交媒体文档内容的不受控制、动态和快速变化,社交媒体自动分析仍然是一项非常具有挑战性的任务。为了实现社交媒体分析的自动化,本文提出了一种基于Ada-Boost学习算法的博客文档自动反馈预测模型。在这种方法中,Ada-Boost分类器应用于从抓取的博客文档中提取的众多特征,以预测在博客发布后的24小时内是否有人对博客文档进行评论。在公开的基准博客反馈数据集上进行的实验评估结果表明,该方法在反馈预测精度和计算时间方面都是有效的;该方法的最大反馈预测率为91.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信