Bias-variance tradeoff in hybrid generative-discriminative models

Guillaume Bouchard
{"title":"Bias-variance tradeoff in hybrid generative-discriminative models","authors":"Guillaume Bouchard","doi":"10.1109/ICMLA.2007.85","DOIUrl":null,"url":null,"abstract":"Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.
生成-判别混合模型中的偏差-方差权衡
给定任何基于不精确密度模型的生成分类器,我们可以定义一个判别对应的分类器,该分类器可以减少其渐近错误率,同时增加估计方差。使用混合生成-判别(HGD)方法可以找到最优的偏差-方差平衡。在本文中,这些方法被定义在一个统一的框架中。这使我们能够找到保证提高泛化性能的充分条件。数值实验证明了我们的观点是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信