{"title":"Bias-variance tradeoff in hybrid generative-discriminative models","authors":"Guillaume Bouchard","doi":"10.1109/ICMLA.2007.85","DOIUrl":null,"url":null,"abstract":"Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Given any generative classifier based on an inexact density model, we can define a discriminative counterpart that reduces its asymptotic error rate, while increasing the estimation variance. An optimal bias-variance balance might be found using hybrid generative-discriminative (HGD) approaches. In these paper, these methods are defined in a unified framework. This allow us to find sufficient conditions under which an improvement in generalization performances is guaranteed. Numerical experiments illustrate the well fondness of our statements.