Unified asymptotic distribution of subspace projectors in complex elliptically symmetric models

J. Delmas, H. Abeida
{"title":"Unified asymptotic distribution of subspace projectors in complex elliptically symmetric models","authors":"J. Delmas, H. Abeida","doi":"10.1109/SSP53291.2023.10208085","DOIUrl":null,"url":null,"abstract":"The statistical performance of subspace-based algorithms depends on the deterministic and stochastic statistical model of the noisy linear mixture of the data, the estimate of the projector, and the algorithm that estimates the parameters from the projector. This paper presents different circular and non-circular complex elliptically symmetric (CES) models of the data and different associated non-robust and robust covariance estimators whose asymptotic distributions are derived. This allows us to unify and complement the asymptotic distribution of subspace projectors adapted to these models and to prove several invariance properties that have impacts on the parameters to be estimated in CES data models.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The statistical performance of subspace-based algorithms depends on the deterministic and stochastic statistical model of the noisy linear mixture of the data, the estimate of the projector, and the algorithm that estimates the parameters from the projector. This paper presents different circular and non-circular complex elliptically symmetric (CES) models of the data and different associated non-robust and robust covariance estimators whose asymptotic distributions are derived. This allows us to unify and complement the asymptotic distribution of subspace projectors adapted to these models and to prove several invariance properties that have impacts on the parameters to be estimated in CES data models.
复椭圆对称模型中子空间投影的统一渐近分布
基于子空间的算法的统计性能取决于数据的噪声线性混合的确定性和随机统计模型、投影器的估计以及从投影器估计参数的算法。本文给出了数据的不同圆形和非圆形复椭圆对称(CES)模型以及相关的不同非鲁棒和鲁棒协方差估计,并给出了它们的渐近分布。这使我们能够统一和补充适用于这些模型的子空间投影的渐近分布,并证明对CES数据模型中待估计参数有影响的几个不变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信