An Approach to Learning in Hopfield Neural Networks

S. Srinivasan, K. Moore, D. Naidu
{"title":"An Approach to Learning in Hopfield Neural Networks","authors":"S. Srinivasan, K. Moore, D. Naidu","doi":"10.23919/ACC.1993.4793427","DOIUrl":null,"url":null,"abstract":"In this paper we present some preliminary ideas for the design of a continuous nonlinear neural networks with \"learning.\" Specifically, we introduce the idea of learning in Hopfield recursive neural networks. The network is trained so that application of a set of inputs produces the desired set of outputs. A method is developed to determine the interconnecting weights for the network, so as to achieve the desired stable equilibrium points. Also, this method illustrates a way to 'learn' the interconnecting weights that are not computed a priori. Conditions are obtained for the asymptotic stability of the equilibrium points. An illustrative simulation is presented.","PeriodicalId":162700,"journal":{"name":"1993 American Control Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1993.4793427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present some preliminary ideas for the design of a continuous nonlinear neural networks with "learning." Specifically, we introduce the idea of learning in Hopfield recursive neural networks. The network is trained so that application of a set of inputs produces the desired set of outputs. A method is developed to determine the interconnecting weights for the network, so as to achieve the desired stable equilibrium points. Also, this method illustrates a way to 'learn' the interconnecting weights that are not computed a priori. Conditions are obtained for the asymptotic stability of the equilibrium points. An illustrative simulation is presented.
Hopfield神经网络的一种学习方法
本文对具有“学习”的连续非线性神经网络的设计提出了一些初步的思想。具体来说,我们在Hopfield递归神经网络中引入了学习的思想。对网络进行训练,使一组输入的应用产生所需的一组输出。提出了一种确定网络互连权值的方法,使网络达到理想的稳定平衡点。此外,该方法还说明了一种“学习”非先验计算的相互关联权重的方法。得到了平衡点渐近稳定的条件。给出了一个说明性仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信