Functional 3-D magnetic nanostructures

J. Sautner, Nithya Jayapratha, V. Metlushko
{"title":"Functional 3-D magnetic nanostructures","authors":"J. Sautner, Nithya Jayapratha, V. Metlushko","doi":"10.1109/ICEAA.2010.5653873","DOIUrl":null,"url":null,"abstract":"Most of magnetic nano-structures today are ultrathin or nanostructured films and multilayers. The main challenge is to find a suitable technology to integrate and to contact nanostructures in a reliable manner. Here, we investigate the problem of contact integration into functional 3-D devices and evaluate the influence of 3-D magnetic layer geometry on performance of magneto-electronic devices. Real devices are truly 3-dimensional structures. Their topography must absolutely be taken into consideration during the design phase since their inherent non-planarity will profoundly affect their magnetization profile. Our initial results strongly indicate that the “non-flatness” of magnetic layer strongly influences the possible magnetic states, alters the switching mechanism and leads to totally new behavior, which was not observed in classic 2-D thin film magnetic structures.","PeriodicalId":375707,"journal":{"name":"2010 International Conference on Electromagnetics in Advanced Applications","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Electromagnetics in Advanced Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAA.2010.5653873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most of magnetic nano-structures today are ultrathin or nanostructured films and multilayers. The main challenge is to find a suitable technology to integrate and to contact nanostructures in a reliable manner. Here, we investigate the problem of contact integration into functional 3-D devices and evaluate the influence of 3-D magnetic layer geometry on performance of magneto-electronic devices. Real devices are truly 3-dimensional structures. Their topography must absolutely be taken into consideration during the design phase since their inherent non-planarity will profoundly affect their magnetization profile. Our initial results strongly indicate that the “non-flatness” of magnetic layer strongly influences the possible magnetic states, alters the switching mechanism and leads to totally new behavior, which was not observed in classic 2-D thin film magnetic structures.
功能三维磁性纳米结构
目前大多数磁性纳米结构都是超薄或纳米结构薄膜和多层结构。主要的挑战是找到一种合适的技术,以可靠的方式集成和接触纳米结构。在这里,我们研究了接触集成到功能三维器件中的问题,并评估了三维磁层几何形状对磁电子器件性能的影响。真正的设备是真正的三维结构。由于其固有的非平面性将深刻地影响其磁化分布,因此在设计阶段必须考虑其形貌。我们的初步结果强烈表明,磁性层的“非平坦性”强烈地影响了可能的磁性状态,改变了开关机制并导致了全新的行为,这在经典的二维薄膜磁性结构中是没有观察到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信