{"title":"Metropolis photon sampling with optional user guidance","authors":"Shaohua Fan, Stephen Chenney, Yu-Chi Lai","doi":"10.2312/EGWR/EGSR05/127-138","DOIUrl":null,"url":null,"abstract":"We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths that join a light to the eye, which accounts for the viewer in the sampling process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits coherence among important light paths. We also present a technique for including user selected paths in the sampling process without introducing bias. This allows a user to provide hints about important paths or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantitative improvements in error over standard Photon Mapping and Metropolis Light Transport.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"1 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGWR/EGSR05/127-138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
We present Metropolis Photon Sampling (MPS), a visual importance-driven algorithm for populating photon maps. Photon Mapping and other particle tracing algorithms fail if the photons are poorly distributed. Our approach samples light transport paths that join a light to the eye, which accounts for the viewer in the sampling process and provides information to improve photon storage. Paths are sampled with a Metropolis-Hastings algorithm that exploits coherence among important light paths. We also present a technique for including user selected paths in the sampling process without introducing bias. This allows a user to provide hints about important paths or reduce variance in specific parts of the image. We demonstrate MPS with a range of scenes and show quantitative improvements in error over standard Photon Mapping and Metropolis Light Transport.