The covariance structure of the bivariate weighted Poisson distribution and application to the Aleurodicus data

P. C. B. Nganga, R. Bidounga, D. Mizère
{"title":"The covariance structure of the bivariate weighted Poisson distribution and application to the Aleurodicus data","authors":"P. C. B. Nganga, R. Bidounga, D. Mizère","doi":"10.16929/AS/2019.1999.146","DOIUrl":null,"url":null,"abstract":"We meet in the literature the bivariate Poisson distribution put in evidence by Berkhout and Plug. From this distribution, Elion et al. put in evidence the bivariate weighted Poisson distribution like crossing of two univariate weighted Poisson distributions. The structure of the covariance of this bivariate weighted Poisson distribution has been put not again in evidence in the literature. Thus, in this paper, we remedy this hiatus. The overdispersion, underdispersion and the equidispersion will be valued with the help of the Fisher dispersion index for multivariate count distributions introduces by Kokonendji et al. An illustrative example based on the Aleurodicus data is presented. Keywords . Bivariate dispersion index; Moment generating function; Conditional law","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/AS/2019.1999.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We meet in the literature the bivariate Poisson distribution put in evidence by Berkhout and Plug. From this distribution, Elion et al. put in evidence the bivariate weighted Poisson distribution like crossing of two univariate weighted Poisson distributions. The structure of the covariance of this bivariate weighted Poisson distribution has been put not again in evidence in the literature. Thus, in this paper, we remedy this hiatus. The overdispersion, underdispersion and the equidispersion will be valued with the help of the Fisher dispersion index for multivariate count distributions introduces by Kokonendji et al. An illustrative example based on the Aleurodicus data is presented. Keywords . Bivariate dispersion index; Moment generating function; Conditional law
二元加权泊松分布的协方差结构及其在木耳资料中的应用
我们在文献中见到了由Berkhout和Plug提出的二元泊松分布。从这个分布中,Elion等人证明了二元加权泊松分布,就像两个单变量加权泊松分布的交叉。这种二元加权泊松分布的协方差结构在文献中已不再明显。因此,在本文中,我们弥补了这一空白。在Kokonendji等人引入的多元计数分布的Fisher色散指数的帮助下,将对过色散、欠色散和等色散进行评估。给出了一个基于木耳资料的实例。关键词。二元色散指数;矩生成函数;有条件的法律
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信