Information space sensor tasking for Space Situational Awareness

Zachary Sunberg, S. Chakravorty, R. Erwin
{"title":"Information space sensor tasking for Space Situational Awareness","authors":"Zachary Sunberg, S. Chakravorty, R. Erwin","doi":"10.1109/ACC.2014.6858922","DOIUrl":null,"url":null,"abstract":"In this paper, we apply a receding horizon control approach to the sensor tasking aspect of a simplified version of the Space Situational Awareness (SSA) problem: “Given a small number of sensors and a large number of satellites, how should the sensors be used to maximize the information gained about the states of the satellites” Finding the globally optimal solution to this partially observed Markov decision process is computationally intractable. However, by using a stochastic gradient ascent algorithm proposed in previous work to improve an open-loop control policy over a shortened horizon, large performance improvements can be made over a baseline myopic tasking policy in a computationally tractable manner. The structure of this approach also allows for a distributed implementation in which each sensor acts as an agent that is semi-independent from the others.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"51 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6858922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we apply a receding horizon control approach to the sensor tasking aspect of a simplified version of the Space Situational Awareness (SSA) problem: “Given a small number of sensors and a large number of satellites, how should the sensors be used to maximize the information gained about the states of the satellites” Finding the globally optimal solution to this partially observed Markov decision process is computationally intractable. However, by using a stochastic gradient ascent algorithm proposed in previous work to improve an open-loop control policy over a shortened horizon, large performance improvements can be made over a baseline myopic tasking policy in a computationally tractable manner. The structure of this approach also allows for a distributed implementation in which each sensor acts as an agent that is semi-independent from the others.
用于空间态势感知的信息空间传感器任务
在本文中,我们将一种退化的地平线控制方法应用于空间态势感知(SSA)问题的简化版本的传感器任务方面:“给定少量的传感器和大量的卫星,如何使用传感器来最大化获得的关于卫星状态的信息”找到这个部分观察到的马尔可夫决策过程的全局最优解在计算上是难以解决的。然而,通过使用先前工作中提出的随机梯度上升算法来改进短视界开环控制策略,可以在计算上易于处理的方式下对基线近视任务策略进行较大的性能改进。这种方法的结构还允许分布式实现,其中每个传感器都充当半独立于其他传感器的代理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信