A perfect hashing to enhance the performance of Apriori algorithm

Manuel Wilson, Malavika S. Nair, Pramod P. Nair, Anusree M
{"title":"A perfect hashing to enhance the performance of Apriori algorithm","authors":"Manuel Wilson, Malavika S. Nair, Pramod P. Nair, Anusree M","doi":"10.1109/ICEEICT56924.2023.10157902","DOIUrl":null,"url":null,"abstract":"Data mining is the process of discovering patterns, relationships, and insights from large datasets using various computational techniques. Association Rules is a data mining method to find various relations between items in an itemset. The Apriori algorithm is a popular and classical algorithm for association rule mining. It has been observed that an increase in the number of candidate sets decreases the efficiency of the Apriori algorithm rapidly. To overcome this issue, the hashing technique, which uses a hash function to reduce the size of the candidate set itemset, is often used. In this paper, a perfect hashing function for a d-itemset is proposed. The efficiency of the Apriori algorithm is enhanced by using the hash function.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data mining is the process of discovering patterns, relationships, and insights from large datasets using various computational techniques. Association Rules is a data mining method to find various relations between items in an itemset. The Apriori algorithm is a popular and classical algorithm for association rule mining. It has been observed that an increase in the number of candidate sets decreases the efficiency of the Apriori algorithm rapidly. To overcome this issue, the hashing technique, which uses a hash function to reduce the size of the candidate set itemset, is often used. In this paper, a perfect hashing function for a d-itemset is proposed. The efficiency of the Apriori algorithm is enhanced by using the hash function.
一个提高Apriori算法性能的完美哈希算法
数据挖掘是使用各种计算技术从大型数据集中发现模式、关系和见解的过程。关联规则是一种数据挖掘方法,用于发现项目集中项目之间的各种关系。Apriori算法是一种流行的经典关联规则挖掘算法。已经观察到,候选集数量的增加会迅速降低Apriori算法的效率。为了克服这个问题,经常使用散列技术,它使用散列函数来减少候选集itemset的大小。本文给出了d项集的一个完美哈希函数。通过使用哈希函数,提高了Apriori算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信