EPSO enhanced by adaptive scaling and sub-swarms

Vladimiro Miranda, J. Vigo, L. Carvalho, C. Marcelino, E. Wanner
{"title":"EPSO enhanced by adaptive scaling and sub-swarms","authors":"Vladimiro Miranda, J. Vigo, L. Carvalho, C. Marcelino, E. Wanner","doi":"10.1109/ISAP48318.2019.9065982","DOIUrl":null,"url":null,"abstract":"This paper reports the positive results derived from adopting two variants for the EPSO - Evolutionary Particle Swarm Optimization method: variable's re-scaling and sub-swarms. Sub-swarms launched from the main swarm can be applied to intensify the search in promising regions of the space. Alternatively, the information regarding the dispersion of the particles along the search space can be used to create local landscapes with a spherical/ellipsoid form in an attempt to take advantage of the excellent convergence properties of metaheuristics for spherically-shaped optimization problems. The net improvement in reducing computing effort is observed in several unconstrained optimization problems and verified with ANOVA.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"154 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper reports the positive results derived from adopting two variants for the EPSO - Evolutionary Particle Swarm Optimization method: variable's re-scaling and sub-swarms. Sub-swarms launched from the main swarm can be applied to intensify the search in promising regions of the space. Alternatively, the information regarding the dispersion of the particles along the search space can be used to create local landscapes with a spherical/ellipsoid form in an attempt to take advantage of the excellent convergence properties of metaheuristics for spherically-shaped optimization problems. The net improvement in reducing computing effort is observed in several unconstrained optimization problems and verified with ANOVA.
采用自适应尺度和子群增强EPSO
本文报道了EPSO -进化粒子群优化方法采用变量的重新缩放和子群两种变体所得到的积极结果。从主群发射的子群可以用来加强对空间有希望区域的搜索。或者,关于粒子沿搜索空间分散的信息可用于创建具有球形/椭球形状的局部景观,以尝试利用元启发式对球形优化问题的出色收敛特性。在几个无约束优化问题中观察到减少计算工作量的净改进,并通过方差分析验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信