S. Katsikas, George N. Manditsios, Fotis N. Dalmiras, G. Sakalis, George Antonopoulos, Andreas Doulgeridis, Dimitrios Mouzakis
{"title":"Challenges to Taking Advantage of High Frequency Data Analytics to Address Environmental Challenges in Maritime Sector","authors":"S. Katsikas, George N. Manditsios, Fotis N. Dalmiras, G. Sakalis, George Antonopoulos, Andreas Doulgeridis, Dimitrios Mouzakis","doi":"10.5957/some-2023-006","DOIUrl":null,"url":null,"abstract":"Shipping operates in a challenging economic environment characterized among other by increasing environmental regulations aiming to contribute to the global GHG emissions reduction targets set. Smart monitoring tools are key solutions for shipping companies to adapt effectively and comply with the new environmental regulations set by local, regional, and international regulatory parties, including the International Maritime Organization (IMO) and other stakeholders. The combination of high frequency data and the employment of advanced analytical technologies offers the shipping industry a great advantage. Continuous data monitoring enables reactive energy performance improvement / optimization, while it allows building up realistic performance models that are used for optimizing the commercial management of the vessels and serve as a basis for new projects. Vessel operational profile monitoring along with voyage planning through optimized speeds and weather routing, effective monitoring of hull & propeller bio-fouling, trim optimization, assessment of innovative solutions installation (i.e., waste heat recovery systems, energy saving devices, new painting schemes, etc.) are practices widely used nowadays to address GHG emissions reduction plan and performance optimization. Current study examines the importance of vessel continuous monitoring on the evaluation of the aforementioned measures, based on established methodologies, along with the development of new algorithms and mathematical models.","PeriodicalId":103776,"journal":{"name":"Day 2 Wed, March 08, 2023","volume":"455 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, March 08, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5957/some-2023-006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Shipping operates in a challenging economic environment characterized among other by increasing environmental regulations aiming to contribute to the global GHG emissions reduction targets set. Smart monitoring tools are key solutions for shipping companies to adapt effectively and comply with the new environmental regulations set by local, regional, and international regulatory parties, including the International Maritime Organization (IMO) and other stakeholders. The combination of high frequency data and the employment of advanced analytical technologies offers the shipping industry a great advantage. Continuous data monitoring enables reactive energy performance improvement / optimization, while it allows building up realistic performance models that are used for optimizing the commercial management of the vessels and serve as a basis for new projects. Vessel operational profile monitoring along with voyage planning through optimized speeds and weather routing, effective monitoring of hull & propeller bio-fouling, trim optimization, assessment of innovative solutions installation (i.e., waste heat recovery systems, energy saving devices, new painting schemes, etc.) are practices widely used nowadays to address GHG emissions reduction plan and performance optimization. Current study examines the importance of vessel continuous monitoring on the evaluation of the aforementioned measures, based on established methodologies, along with the development of new algorithms and mathematical models.