{"title":"Conflict Graph Based Channel Allocation in Cognitive Radio Networks","authors":"Vinesh Teotia, Vipin Kumar, S. Minz","doi":"10.1109/SRDSW.2015.19","DOIUrl":null,"url":null,"abstract":"Cognitive radio technology provides a framework for flexible way to utilize the white spaces using the various spectrum sharing techniques. Interference plays an important role in communication when the channels are shared by the licensed and unlicensed users. Further, the signal to interference plus noise ratio also provide the bounds for the channel capacity. For this the authors introduce a conflict graph based approach for optimal channel allocation in cognitive radio networks named as Conflict Graph based Channel Allocation(CGCA) scheme. The proposed CGCA scheme was simulated and observed that the CGCA scheme outperformed Interference Aware Channel Assignment (IACA) scheme in terms of channel allocation. The channel allocation of the proposed CGCA was observed to have increased by 19 channels, when the unlicensed users shared the network as compared to the IACA technique.","PeriodicalId":415692,"journal":{"name":"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 34th Symposium on Reliable Distributed Systems Workshop (SRDSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDSW.2015.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Cognitive radio technology provides a framework for flexible way to utilize the white spaces using the various spectrum sharing techniques. Interference plays an important role in communication when the channels are shared by the licensed and unlicensed users. Further, the signal to interference plus noise ratio also provide the bounds for the channel capacity. For this the authors introduce a conflict graph based approach for optimal channel allocation in cognitive radio networks named as Conflict Graph based Channel Allocation(CGCA) scheme. The proposed CGCA scheme was simulated and observed that the CGCA scheme outperformed Interference Aware Channel Assignment (IACA) scheme in terms of channel allocation. The channel allocation of the proposed CGCA was observed to have increased by 19 channels, when the unlicensed users shared the network as compared to the IACA technique.