Generating private synthetic databases for untrusted system evaluation

Wentian Lu, G. Miklau, Vani Gupta
{"title":"Generating private synthetic databases for untrusted system evaluation","authors":"Wentian Lu, G. Miklau, Vani Gupta","doi":"10.1109/ICDE.2014.6816689","DOIUrl":null,"url":null,"abstract":"Evaluating the performance of database systems is crucial when database vendors or researchers are developing new technologies. But such evaluation tasks rely heavily on actual data and query workloads that are often unavailable to researchers due to privacy restrictions. To overcome this barrier, we propose a framework for the release of a synthetic database which accurately models selected performance properties of the original database. We improve on prior work on synthetic database generation by providing a formal, rigorous guarantee of privacy. Accuracy is achieved by generating synthetic data using a carefully selected set of statistical properties of the original data which balance privacy loss with relevance to the given query workload. An important contribution of our framework is an extension of standard differential privacy to multiple tables.","PeriodicalId":159130,"journal":{"name":"2014 IEEE 30th International Conference on Data Engineering","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 30th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2014.6816689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Evaluating the performance of database systems is crucial when database vendors or researchers are developing new technologies. But such evaluation tasks rely heavily on actual data and query workloads that are often unavailable to researchers due to privacy restrictions. To overcome this barrier, we propose a framework for the release of a synthetic database which accurately models selected performance properties of the original database. We improve on prior work on synthetic database generation by providing a formal, rigorous guarantee of privacy. Accuracy is achieved by generating synthetic data using a carefully selected set of statistical properties of the original data which balance privacy loss with relevance to the given query workload. An important contribution of our framework is an extension of standard differential privacy to multiple tables.
为不受信任的系统评估生成私有合成数据库
当数据库供应商或研究人员开发新技术时,评估数据库系统的性能是至关重要的。但这种评估任务严重依赖于实际数据和查询工作负载,由于隐私限制,研究人员通常无法获得这些数据和查询工作负载。为了克服这一障碍,我们提出了一个框架,用于发布一个合成数据库,该数据库可以准确地模拟原始数据库的选定性能属性。通过提供正式、严格的隐私保证,我们改进了之前合成数据库生成的工作。准确性是通过使用一组精心选择的原始数据的统计属性生成合成数据来实现的,这些数据平衡了隐私损失和与给定查询工作负载的相关性。我们的框架的一个重要贡献是将标准差分隐私扩展到多个表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信