{"title":"Comparison of eigenface-based feature vectors under different impairments","authors":"Aristodemos Pnevmatikakis, L. Polymenakos","doi":"10.1109/ICPR.2004.1334111","DOIUrl":null,"url":null,"abstract":"We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
We study the performance of a new eigenface-based method for face recognition. Specifically, we perform DCT preprocessing followed by the PCA-LDA combination. We compare the new method to existing ones (PCA, PCA-LDA, DCT-PCA) under impairments like changes in brightness, direction-of-illumination, hairstyle, clothing, expression, head orientation, and added noise. In this paper feature extraction methods are outlined. The results are obtained using two different face databases: the Aberdeen database from University of Stirling and the ORL database from University of Cambridge.