Managing the Learner Model With Multi-Entity Bayesian Networks in Adaptive Hypermedia Systems

M. A. Tadlaoui, Rommel N. Carvalho, Mohamed Khaldi
{"title":"Managing the Learner Model With Multi-Entity Bayesian Networks in Adaptive Hypermedia Systems","authors":"M. A. Tadlaoui, Rommel N. Carvalho, Mohamed Khaldi","doi":"10.4018/978-1-5225-9031-6.CH005","DOIUrl":null,"url":null,"abstract":"Modeling the learner in adaptive systems involves different information. There are several methods to manage the learner model. They do not handle the uncertainty in the dynamic modeling of the learner. The main hypothesis of this chapter is the management of the learner model based on multi-entity Bayesian networks. This chapter focuses on modeling the learner model in a dynamic and probabilistic way. The authors propose in this work the use of the notion of fragments and m-theory to lead to a Bayesian multi-entity network. The use of this Bayesian method can handle the whole course of a learner as well as all of its shares in an adaptive educational hypermedia.","PeriodicalId":384539,"journal":{"name":"Cognitive Computing in Technology-Enhanced Learning","volume":"143 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computing in Technology-Enhanced Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-9031-6.CH005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling the learner in adaptive systems involves different information. There are several methods to manage the learner model. They do not handle the uncertainty in the dynamic modeling of the learner. The main hypothesis of this chapter is the management of the learner model based on multi-entity Bayesian networks. This chapter focuses on modeling the learner model in a dynamic and probabilistic way. The authors propose in this work the use of the notion of fragments and m-theory to lead to a Bayesian multi-entity network. The use of this Bayesian method can handle the whole course of a learner as well as all of its shares in an adaptive educational hypermedia.
自适应超媒体系统中基于多实体贝叶斯网络的学习者模型管理
在自适应系统中对学习者进行建模涉及到不同的信息。有几种方法可以管理学习者模型。他们没有处理学习者动态建模中的不确定性。本章的主要假设是基于多实体贝叶斯网络的学习器模型的管理。本章的重点是用动态和概率的方式对学习者模型进行建模。作者在这项工作中提出使用碎片和m理论的概念来导致贝叶斯多实体网络。使用这种贝叶斯方法可以处理学习者的整个过程,以及它在自适应教育超媒体中的所有份额。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信