Stochastic complexities of hidden Markov models

Keisuke Yamazaki, Sumio Watanabe
{"title":"Stochastic complexities of hidden Markov models","authors":"Keisuke Yamazaki, Sumio Watanabe","doi":"10.1109/NNSP.2003.1318017","DOIUrl":null,"url":null,"abstract":"Hidden Markov models are now used in many fields, for example, speech recognition, natural language processing etc. However, the mathematical foundation of analysis for the models has not yet been constructed, since the HMMs are non-identifiable. In recent years, we have developed the algebraic geometrical method that allows us to analyze the non-regular and non-identifiable models. In this paper, we apply this method to the HMM and reveal the asymptotic order of its stochastic complexity in the mathematically rigorous way.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Hidden Markov models are now used in many fields, for example, speech recognition, natural language processing etc. However, the mathematical foundation of analysis for the models has not yet been constructed, since the HMMs are non-identifiable. In recent years, we have developed the algebraic geometrical method that allows us to analyze the non-regular and non-identifiable models. In this paper, we apply this method to the HMM and reveal the asymptotic order of its stochastic complexity in the mathematically rigorous way.
隐马尔可夫模型的随机复杂性
隐马尔可夫模型目前应用于许多领域,如语音识别、自然语言处理等。然而,模型分析的数学基础尚未建立,因为hmm是不可识别的。近年来,我们发展了代数几何方法,使我们能够分析非规则和不可识别的模型。本文将此方法应用于HMM,并以数学严谨的方式揭示了其随机复杂度的渐近阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信