Data-driven two-stage stochastic programming for utility system optimization under uncertainty

Liang Zhao
{"title":"Data-driven two-stage stochastic programming for utility system optimization under uncertainty","authors":"Liang Zhao","doi":"10.1109/IAI55780.2022.9976614","DOIUrl":null,"url":null,"abstract":"The utility system is a popular research field in process optimization. At the same time, widespread uncertainties pose new challenges to this issue. This paper presents a data-driven two-stage stochastic programming (TSSP) to hedge against uncertainty. A kernel density estimation (KDE) method is used to calculate the probability density function from uncertain data. Based on the derived probability density function, Latin Hypercube Sampling (LHS) samples 8-dimension uncertain data to generate different scenarios. Lastly, a real-world case study is conducted to demonstrate the effectiveness of the approach.","PeriodicalId":138951,"journal":{"name":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Industrial Artificial Intelligence (IAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI55780.2022.9976614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The utility system is a popular research field in process optimization. At the same time, widespread uncertainties pose new challenges to this issue. This paper presents a data-driven two-stage stochastic programming (TSSP) to hedge against uncertainty. A kernel density estimation (KDE) method is used to calculate the probability density function from uncertain data. Based on the derived probability density function, Latin Hypercube Sampling (LHS) samples 8-dimension uncertain data to generate different scenarios. Lastly, a real-world case study is conducted to demonstrate the effectiveness of the approach.
不确定条件下电力系统优化的数据驱动两阶段随机规划
电力系统是过程优化研究的热点。与此同时,普遍存在的不确定性给这一问题带来了新的挑战。本文提出了一种数据驱动的两阶段随机规划(TSSP)来对冲不确定性。采用核密度估计(KDE)方法从不确定数据中计算概率密度函数。LHS (Latin Hypercube Sampling)基于导出的概率密度函数,对8维不确定数据进行采样,生成不同的场景。最后,通过实际案例分析,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信