A mahout based image classification framework for very large dataset

Jun He, Zhixiang Xue, Ming-Wei Gao, Hao Wu
{"title":"A mahout based image classification framework for very large dataset","authors":"Jun He, Zhixiang Xue, Ming-Wei Gao, Hao Wu","doi":"10.1109/CCIOT.2014.7062518","DOIUrl":null,"url":null,"abstract":"In this paper, we present a distributed computing framework for image classification towards the current challenge of image big data due to enormous streaming image data sources, such as image sharing over online social network and massive video surveillance streams from ubiquitous cameras all over our daily life. The proposed framework consists of four modules aiming at feature extraction, dimension reduction, bag of feature modeling, and supervised learning respectively. This distributed computing framework is implemented on Hadoop with Mahout support. We apply the framework for classifying whether a person is on calling or not in a surveillance video to verify the correctness and scalability.","PeriodicalId":255477,"journal":{"name":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2014 International Conference on Cloud Computing and Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIOT.2014.7062518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a distributed computing framework for image classification towards the current challenge of image big data due to enormous streaming image data sources, such as image sharing over online social network and massive video surveillance streams from ubiquitous cameras all over our daily life. The proposed framework consists of four modules aiming at feature extraction, dimension reduction, bag of feature modeling, and supervised learning respectively. This distributed computing framework is implemented on Hadoop with Mahout support. We apply the framework for classifying whether a person is on calling or not in a surveillance video to verify the correctness and scalability.
基于mahout的超大数据集图像分类框架
在本文中,我们提出了一种分布式计算框架,用于图像分类,以应对当前图像大数据面临的挑战,因为大量的流图像数据源,如在线社交网络上的图像共享和来自我们日常生活中无处不在的摄像机的大量视频监控流。该框架包括四个模块,分别针对特征提取、降维、特征包建模和监督学习。这个分布式计算框架是在支持Mahout的Hadoop上实现的。我们应用该框架对监控视频中的人是否在通话进行分类,以验证其正确性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信