{"title":"Integration of Energy Storage Systems within Modular Multilevel Converters for Medium-Voltage Distribution Networks","authors":"P. Meloni, A. Serpi","doi":"10.1109/IECON49645.2022.9968995","DOIUrl":null,"url":null,"abstract":"This paper presents two novel Modular Multilevel Converter (MMC) configurations for medium-voltage distribution networks, which are achieved by replacing some capacitive cells of each MMC branch with Supercapacitors (SCs) and Battery Packs (BPs), respectively. The first configuration (MMC-SC) is able to exploit SC energy content by preserving MMC branch voltage capability, thus ensuring a suitable dynamic decoupling between grid and DC-link power demands. Steady-state decoupling can be achieved by the second configuration (MMC-BP), which can charge/discharge BP as needed. MMC-SC and MMC-BP functionality is guaranteed by a multi-stage control system architecture, which has been developed in order to ensure proper MMC energy, current and voltage management at any operating conditions. The effectiveness of both MMC-SC and MMC-BP is verified through simulation studies, which regard step-changing active and reactive grid power profiles.","PeriodicalId":125740,"journal":{"name":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON49645.2022.9968995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents two novel Modular Multilevel Converter (MMC) configurations for medium-voltage distribution networks, which are achieved by replacing some capacitive cells of each MMC branch with Supercapacitors (SCs) and Battery Packs (BPs), respectively. The first configuration (MMC-SC) is able to exploit SC energy content by preserving MMC branch voltage capability, thus ensuring a suitable dynamic decoupling between grid and DC-link power demands. Steady-state decoupling can be achieved by the second configuration (MMC-BP), which can charge/discharge BP as needed. MMC-SC and MMC-BP functionality is guaranteed by a multi-stage control system architecture, which has been developed in order to ensure proper MMC energy, current and voltage management at any operating conditions. The effectiveness of both MMC-SC and MMC-BP is verified through simulation studies, which regard step-changing active and reactive grid power profiles.