TinyOLE: Efficient Actively Secure Two-Party Computation from Oblivious Linear Function Evaluation

Nico Döttling, Satrajit Ghosh, J. Nielsen, Tobias Nilges, Roberto Trifiletti
{"title":"TinyOLE: Efficient Actively Secure Two-Party Computation from Oblivious Linear Function Evaluation","authors":"Nico Döttling, Satrajit Ghosh, J. Nielsen, Tobias Nilges, Roberto Trifiletti","doi":"10.1145/3133956.3134024","DOIUrl":null,"url":null,"abstract":"We introduce a new approach to actively secure two-party computation based on so-called oblivious linear function evaluation (OLE), a natural generalisation of oblivious transfer (OT) and a special case of the notion of oblivious polynomial evaluation introduced by Naor and Pinkas at STOC 1999. OLE works over a finite field F. In an OLE the sender inputs two field elements a ƒ F and b ƒ F, and the receiver inputs a field element x ∈ F and learns only ƒx) = ax + b. Our protocol can evaluate an arithmetic circuit over a finite field F given black-box access to OLE for F. The protocol is unconditionally secure and consumes only a constant number of OLEs per multiplication gate. An OLE over a field F of size O(2κ) be implemented with communication O(κ). This gives a protocol with communication complexity O(C κ) for large enough fields, where C is an arithmetic circuit computing the desired function. This asymptotically matches the best previous protocols, but our protocol at the same time obtains significantly smaller constants hidden by the big-O notation, yielding a highly practical protocol. Conceptually our techniques lift the techniques for basing practical actively secure 2PC of Boolean circuits on OT introduced under the name TinyOT by Nielsen, Nordholt, Orlandi and Burra at Crypto 2012 to the arithmetic setting. In doing so we develop several novel techniques for generating various flavours of OLE and combining these. We believe that the efficiency of our protocols, both in asymptotic and practical terms, establishes OLE and its variants as an important foundation for efficient actively secure 2PC.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We introduce a new approach to actively secure two-party computation based on so-called oblivious linear function evaluation (OLE), a natural generalisation of oblivious transfer (OT) and a special case of the notion of oblivious polynomial evaluation introduced by Naor and Pinkas at STOC 1999. OLE works over a finite field F. In an OLE the sender inputs two field elements a ƒ F and b ƒ F, and the receiver inputs a field element x ∈ F and learns only ƒx) = ax + b. Our protocol can evaluate an arithmetic circuit over a finite field F given black-box access to OLE for F. The protocol is unconditionally secure and consumes only a constant number of OLEs per multiplication gate. An OLE over a field F of size O(2κ) be implemented with communication O(κ). This gives a protocol with communication complexity O(C κ) for large enough fields, where C is an arithmetic circuit computing the desired function. This asymptotically matches the best previous protocols, but our protocol at the same time obtains significantly smaller constants hidden by the big-O notation, yielding a highly practical protocol. Conceptually our techniques lift the techniques for basing practical actively secure 2PC of Boolean circuits on OT introduced under the name TinyOT by Nielsen, Nordholt, Orlandi and Burra at Crypto 2012 to the arithmetic setting. In doing so we develop several novel techniques for generating various flavours of OLE and combining these. We believe that the efficiency of our protocols, both in asymptotic and practical terms, establishes OLE and its variants as an important foundation for efficient actively secure 2PC.
TinyOLE:基于遗忘线性函数求值的高效主动安全的两方计算
我们介绍了一种新的主动保护两方计算的方法,该方法基于所谓的遗忘线性函数求值(OLE),遗忘转移(OT)的自然推广以及Naor和Pinkas在STOC 1999上引入的遗忘多项式求值概念的特殊情况。OLE在有限域F上工作,在OLE中,发送方输入两个域元素a F和b F,接收方输入一个域元素x∈F,并且只学习ƒx) = ax + b。我们的协议可以在有限域F上评估算术电路,给定F对OLE的黑箱访问。协议是无条件安全的,并且每个乘法门只消耗恒定数量的OLE。一个大小为O(2κ)的字段F上的OLE通过通信O(κ)来实现。对于足够大的字段,这给出了一个通信复杂度为O(C κ)的协议,其中C是计算所需函数的算术电路。这与以前最好的协议渐近匹配,但我们的协议同时获得了由大0符号隐藏的更小的常数,从而产生了一个高度实用的协议。从概念上讲,我们的技术将基于实际主动安全的布尔电路2PC的技术提升到算术设置,该技术由Nielsen, Nordholt, Orlandi和Burra在Crypto 2012上以TinyOT的名义引入OT。在此过程中,我们开发了几种新技术来生成各种风格的OLE并将它们组合起来。我们相信我们协议的效率,无论是在渐近和实际方面,都将OLE及其变体建立为高效主动安全2PC的重要基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信