Approximating propositional calculi by finite-valued logics

M. Baaz, R. Zach
{"title":"Approximating propositional calculi by finite-valued logics","authors":"M. Baaz, R. Zach","doi":"10.1109/ISMVL.1994.302193","DOIUrl":null,"url":null,"abstract":"The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can be computed from the calculus.<<ETX>>","PeriodicalId":137138,"journal":{"name":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 24th International Symposium on Multiple-Valued Logic (ISMVL'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1994.302193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can be computed from the calculus.<>
用有限值逻辑逼近命题演算
逼近命题演算的问题是用尽可能少的重言式找到对该演算健全的多值逻辑(即,所有的演算定理都是重言式)。这对于用多值逻辑(计算简单)表示人工智能中使用的(计算复杂)逻辑具有潜在的应用。研究了使用(1)一个或(2)一个无限多值逻辑序列,该方法可以进行多远。结果表明,(1)的最优候选矩阵可由微积分计算得到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信