A Pursuit Strategy for Multi-Agent Pursuit-Evasion Game via Multi-Agent Deep Deterministic Policy Gradient Algorithm

Jianfeng Ye, Qing Wang, B.-Y. Ma, Yongbao Wu, Lei Xue
{"title":"A Pursuit Strategy for Multi-Agent Pursuit-Evasion Game via Multi-Agent Deep Deterministic Policy Gradient Algorithm","authors":"Jianfeng Ye, Qing Wang, B.-Y. Ma, Yongbao Wu, Lei Xue","doi":"10.1109/ICUS55513.2022.9986838","DOIUrl":null,"url":null,"abstract":"This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method.","PeriodicalId":345773,"journal":{"name":"2022 IEEE International Conference on Unmanned Systems (ICUS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Unmanned Systems (ICUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUS55513.2022.9986838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a classical pursuit-evasion problem. The pursuer attempts to capture the faster evader in a bounded area. The velocity of evader is 1.2 times as fast as the pursuers'. All of them have adaptive strategies. We use game theory to model the multi-agent pursuit-evasion game and prove that the game model has Nash equilibrium. Then, we modify the multi-agent deep deterministic policy gradient (MADDPG) algorithm for seeking the Nash equilibrium. The simulation examples are given to illustrate the effectiveness of the designed method.
基于多智能体深度确定性策略梯度算法的多智能体追逃博弈追捕策略
本文研究了一个经典的追逃问题。追赶者试图在限定区域内抓住速度更快的逃兵。逃避者的速度是追踪者的1.2倍。它们都有适应策略。利用博弈论对多智能体追逃博弈进行建模,证明了该博弈模型具有纳什均衡。然后,我们修改了多智能体深度确定性策略梯度(madpg)算法来寻求纳什均衡。仿真算例说明了所设计方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信