Accelerating Convolutional Neural Networks for Mobile Applications

Peisong Wang, Jian Cheng
{"title":"Accelerating Convolutional Neural Networks for Mobile Applications","authors":"Peisong Wang, Jian Cheng","doi":"10.1145/2964284.2967280","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have achieved remarkable performance in a wide range of computer vision tasks, typically at the cost of massive computational complexity. The low speed of these networks may hinder real-time applications especially when computational resources are limited. In this paper, an efficient and effective approach is proposed to accelerate the test-phase computation of CNNs based on low-rank and group sparse tensor decomposition. Specifically, for each convolutional layer, the kernel tensor is decomposed into the sum of a small number of low multilinear rank tensors. Then we replace the original kernel tensors in all layers with the approximate tensors and fine-tune the whole net with respect to the final classification task using standard backpropagation. \\\\ Comprehensive experiments on ILSVRC-12 demonstrate significant reduction in computational complexity, at the cost of negligible loss in accuracy. For the widely used VGG-16 model, our approach obtains a 6.6$\\times$ speed-up on PC and 5.91$\\times$ speed-up on mobile device of the whole network with less than 1\\% increase on top-5 error.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

Convolutional neural networks (CNNs) have achieved remarkable performance in a wide range of computer vision tasks, typically at the cost of massive computational complexity. The low speed of these networks may hinder real-time applications especially when computational resources are limited. In this paper, an efficient and effective approach is proposed to accelerate the test-phase computation of CNNs based on low-rank and group sparse tensor decomposition. Specifically, for each convolutional layer, the kernel tensor is decomposed into the sum of a small number of low multilinear rank tensors. Then we replace the original kernel tensors in all layers with the approximate tensors and fine-tune the whole net with respect to the final classification task using standard backpropagation. \\ Comprehensive experiments on ILSVRC-12 demonstrate significant reduction in computational complexity, at the cost of negligible loss in accuracy. For the widely used VGG-16 model, our approach obtains a 6.6$\times$ speed-up on PC and 5.91$\times$ speed-up on mobile device of the whole network with less than 1\% increase on top-5 error.
为移动应用加速卷积神经网络
卷积神经网络(cnn)在广泛的计算机视觉任务中取得了显着的性能,通常是以巨大的计算复杂性为代价的。这些网络的低速度可能会阻碍实时应用,特别是在计算资源有限的情况下。本文提出了一种基于低秩和群稀疏张量分解的方法来加速cnn的测试阶段计算。具体来说,对于每个卷积层,核张量被分解为少量低多线性秩张量的和。然后用近似张量替换所有层的原始核张量,并根据最终的分类任务使用标准反向传播对整个网络进行微调。在ILSVRC-12上进行的综合实验表明,计算复杂性显著降低,而精度损失可以忽略不计。对于广泛使用的VGG-16模型,我们的方法在整个网络的PC和移动设备上获得了6.6美元\倍的加速和5.91美元\倍的加速,并且前5位误差增加不到1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信