Hengduo Li, Jun Liu, Guyue Zhang, Yuan Gao, Yirui Wu
{"title":"Multi-glimpse LSTM with color-depth feature fusion for human detection","authors":"Hengduo Li, Jun Liu, Guyue Zhang, Yuan Gao, Yirui Wu","doi":"10.1109/ICIP.2017.8296412","DOIUrl":null,"url":null,"abstract":"With the development of depth cameras such as Kinect and Intel Realsense, RGB-D based human detection receives continuous research attention due to its usage in a variety of applications. In this paper, we propose a new Multi-Glimpse LSTM (MG-LSTM) network, in which multi-scale contextual information is sequentially integrated to promote the human detection performance. Furthermore, we propose a feature fusion strategy based on our MG-LSTM network to better incorporate the RGB and depth information. To the best of our knowledge, this is the first attempt to utilize LSTM structure for RGB-D based human detection. Our method achieves superior performance on two publicly available datasets.","PeriodicalId":229602,"journal":{"name":"2017 IEEE International Conference on Image Processing (ICIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2017.8296412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
With the development of depth cameras such as Kinect and Intel Realsense, RGB-D based human detection receives continuous research attention due to its usage in a variety of applications. In this paper, we propose a new Multi-Glimpse LSTM (MG-LSTM) network, in which multi-scale contextual information is sequentially integrated to promote the human detection performance. Furthermore, we propose a feature fusion strategy based on our MG-LSTM network to better incorporate the RGB and depth information. To the best of our knowledge, this is the first attempt to utilize LSTM structure for RGB-D based human detection. Our method achieves superior performance on two publicly available datasets.