Integral models of local Shimura varieties

P. Scholze, Jared Weinstein
{"title":"Integral models of local Shimura varieties","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.28","DOIUrl":null,"url":null,"abstract":"This chapter explains an application of the theory developed in these lectures towards the problem of understanding integral models of local Shimura varieties. As a specific example, it resolves conjectures of Kudla-Rapoport-Zink and Rapoport-Zink, that two Rapoport-Zink spaces associated with very different PEL data are isomorphic. The basic reason is that the corresponding group-theoretic data are related by an exceptional isomorphism of groups, so such results follow once one has a group-theoretic characterization of Rapoport-Zink spaces. The interest in these conjectures comes from the observation of Kudla-Rapoport-Zink that one can obtain a moduli-theoretic proof of Čerednik's p-adic uniformization for Shimura curves using these exceptional isomorphisms. The chapter defines integral models of local Shimura varieties as v-sheaves.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter explains an application of the theory developed in these lectures towards the problem of understanding integral models of local Shimura varieties. As a specific example, it resolves conjectures of Kudla-Rapoport-Zink and Rapoport-Zink, that two Rapoport-Zink spaces associated with very different PEL data are isomorphic. The basic reason is that the corresponding group-theoretic data are related by an exceptional isomorphism of groups, so such results follow once one has a group-theoretic characterization of Rapoport-Zink spaces. The interest in these conjectures comes from the observation of Kudla-Rapoport-Zink that one can obtain a moduli-theoretic proof of Čerednik's p-adic uniformization for Shimura curves using these exceptional isomorphisms. The chapter defines integral models of local Shimura varieties as v-sheaves.
局部志村品种的积分模型
这一章解释了在这些讲座中发展的理论在理解局部志村变量的积分模型问题上的应用。作为一个具体的例子,它解决了Kudla-Rapoport-Zink和Rapoport-Zink的猜想,即两个与非常不同的PEL数据相关的Rapoport-Zink空间是同构的。其基本原因是相应的群论数据是由群的异常同构联系在一起的,因此一旦有了Rapoport-Zink空间的群论表征,就会得到这样的结果。对这些猜想的兴趣来自于Kudla-Rapoport-Zink的观察,即人们可以利用这些异常同构获得Čerednik对Shimura曲线的p进均匀化的模理论证明。本章将局部志村品种的积分模型定义为v型轴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信