Face recognition using AAM and global shape features

J. Chen, Han-Pang Huang
{"title":"Face recognition using AAM and global shape features","authors":"J. Chen, Han-Pang Huang","doi":"10.1109/ROBIO.2009.4913106","DOIUrl":null,"url":null,"abstract":"A new technique for face recognition is proposed, which uses Active Appearance Model (AAM) to extract facial feature points and uses global shape features to recognize face. To enhance performance of AAM, we use Adaboost to locate positions of eyes. After extraction of facial feature points, we use any two points of global shape features and compute the distance of two points as a descriptor to construct the whole descriptors of a face. To reduce computation, we use Principle component analysis (PCA) to reduce the dimensions of descriptors. Moreover, either Support Vector Machines (SVMs) or K-Nearest-Neighbor (K-NN) is used to increase recognition rates. In contrast with the conventional recognition algorithm such as Eigenfaces, our method performs better under varying illumination because we use global shape features rather than gray scale pixel values. At last, we demonstrate our approach by experiments.","PeriodicalId":321332,"journal":{"name":"2008 IEEE International Conference on Robotics and Biomimetics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Robotics and Biomimetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2009.4913106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new technique for face recognition is proposed, which uses Active Appearance Model (AAM) to extract facial feature points and uses global shape features to recognize face. To enhance performance of AAM, we use Adaboost to locate positions of eyes. After extraction of facial feature points, we use any two points of global shape features and compute the distance of two points as a descriptor to construct the whole descriptors of a face. To reduce computation, we use Principle component analysis (PCA) to reduce the dimensions of descriptors. Moreover, either Support Vector Machines (SVMs) or K-Nearest-Neighbor (K-NN) is used to increase recognition rates. In contrast with the conventional recognition algorithm such as Eigenfaces, our method performs better under varying illumination because we use global shape features rather than gray scale pixel values. At last, we demonstrate our approach by experiments.
基于AAM和全局形状特征的人脸识别
提出了一种新的人脸识别技术,利用主动外观模型(AAM)提取人脸特征点,利用全局形状特征进行人脸识别。为了提高AAM的性能,我们使用Adaboost来定位眼睛的位置。在提取人脸特征点后,我们使用全局形状特征的任意两点并计算两点之间的距离作为描述符来构建人脸的整体描述符。为了减少计算量,我们使用主成分分析(PCA)来降低描述符的维数。此外,使用支持向量机(svm)或k -最近邻(K-NN)来提高识别率。与传统的识别算法(如Eigenfaces)相比,我们的方法在不同光照下表现更好,因为我们使用全局形状特征而不是灰度像素值。最后,通过实验对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信