Semantic Enrichment of Spatio-Temporal Production Data to Determine Lead Times for Manufacturing Simulation

Carina Mieth
{"title":"Semantic Enrichment of Spatio-Temporal Production Data to Determine Lead Times for Manufacturing Simulation","authors":"Carina Mieth","doi":"10.1109/WSC40007.2019.9004753","DOIUrl":null,"url":null,"abstract":"Data from real-time indoor localization systems (RTILS) based on ultra-wideband (UWB) technology provide spatio-temporal information on the material flows of production orders on the shop floor. This paper investigates how historical position data can be used for the determination of lead times and respective time shares. We propose three different approaches for the enrichment of spatio-temporal trajectories with process information. Two of them are online algorithms for the automated posting of process times using either points or areas of interest. The third is an offline classification problem that minimizes the error that occurs during the assignment of measurements to processes when generating semantic trajectories. Furthermore, a sensor fusion concept is presented, which is necessary to split up the lead times of the operations in smaller time shares for simulation input modeling.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Data from real-time indoor localization systems (RTILS) based on ultra-wideband (UWB) technology provide spatio-temporal information on the material flows of production orders on the shop floor. This paper investigates how historical position data can be used for the determination of lead times and respective time shares. We propose three different approaches for the enrichment of spatio-temporal trajectories with process information. Two of them are online algorithms for the automated posting of process times using either points or areas of interest. The third is an offline classification problem that minimizes the error that occurs during the assignment of measurements to processes when generating semantic trajectories. Furthermore, a sensor fusion concept is presented, which is necessary to split up the lead times of the operations in smaller time shares for simulation input modeling.
时空生产数据的语义丰富,以确定制造仿真的交货时间
基于超宽带(UWB)技术的实时室内定位系统(RTILS)的数据提供了车间生产订单物料流的时空信息。本文研究了历史位置数据如何用于确定交货时间和各自的时间份额。我们提出了三种不同的方法来丰富具有过程信息的时空轨迹。其中两个是在线算法,用于使用感兴趣的点或领域自动发布流程时间。第三个是离线分类问题,该问题在生成语义轨迹时将测量值分配给过程时发生的错误最小化。在此基础上,提出了一种传感器融合的概念,将操作的前置时间分割成较小的时间份额进行仿真输入建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信