A Method of Accelerating LDA Program with GPU

Yanjun Jiang, Hualong Wen, Zhanchun Gao
{"title":"A Method of Accelerating LDA Program with GPU","authors":"Yanjun Jiang, Hualong Wen, Zhanchun Gao","doi":"10.1109/ICNDC.2012.14","DOIUrl":null,"url":null,"abstract":"LDA (Latent Dirichlet Allocation) is a text modeling algorithm based on a generative probabilistic model. It is widely used to discover latent topics among a set of documents. Mahout has implemented LDA algorithm, however, the execution time of the LDA program is very long when processing a large amount of documents, because the documents are processed in sequence. This paper introduces a method to modify this program with CUDA toolkit provided by NVIDIA, in order that a group of documents could be processed in parallel on GPU. Using this method, the LDA program could be accelerated greatly.","PeriodicalId":151593,"journal":{"name":"2012 Third International Conference on Networking and Distributed Computing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Conference on Networking and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNDC.2012.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

LDA (Latent Dirichlet Allocation) is a text modeling algorithm based on a generative probabilistic model. It is widely used to discover latent topics among a set of documents. Mahout has implemented LDA algorithm, however, the execution time of the LDA program is very long when processing a large amount of documents, because the documents are processed in sequence. This paper introduces a method to modify this program with CUDA toolkit provided by NVIDIA, in order that a group of documents could be processed in parallel on GPU. Using this method, the LDA program could be accelerated greatly.
一种用GPU加速LDA程序的方法
LDA (Latent Dirichlet Allocation)是一种基于生成概率模型的文本建模算法。它被广泛用于发现一组文档中的潜在主题。Mahout实现了LDA算法,但是在处理大量文档时,由于文档是按顺序处理的,所以LDA程序的执行时间很长。本文介绍了一种利用NVIDIA提供的CUDA工具包对该程序进行修改的方法,使一组文档可以在GPU上并行处理。采用这种方法可以大大加快LDA程序的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信