Characterizing the UAE national Web with a two-step filter

M. Sanver, Chiraz BenAbdelkader
{"title":"Characterizing the UAE national Web with a two-step filter","authors":"M. Sanver, Chiraz BenAbdelkader","doi":"10.1109/IEEEGCC.2011.5752614","DOIUrl":null,"url":null,"abstract":"The Web as a large collection of pages is organized around a hierarchical domain system. For searching, analyzing or other purposes, selecting a subset from it is a challenging problem. In this paper, we address the issue of determining the pages related to a country as a subset. A Web page ‘belongs’ to a national Web if it bears or represents identities from a particular country. Using the national domain such as .ae, .uk, as primary identifier and IP address, geographic locations, and language as augmented/secondary identifiers is no longer adequate. We propose a two-step Web page classifier (1) pre-crawl filter and (2) post-crawl filter. The former stage prunes out Web pages not belonging to the nation under investigation before fetching/downloading a Web page while the later stage filters irrelevant ones through a multiple-step analysis after downloading a page. We used the United Arab Emirates (UAE) national Web as a case study. We share our experience crawling the national Web, introduce the crawler designed to accomplish the task, and present some of our results and findings.","PeriodicalId":119104,"journal":{"name":"2011 IEEE GCC Conference and Exhibition (GCC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE GCC Conference and Exhibition (GCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEEGCC.2011.5752614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Web as a large collection of pages is organized around a hierarchical domain system. For searching, analyzing or other purposes, selecting a subset from it is a challenging problem. In this paper, we address the issue of determining the pages related to a country as a subset. A Web page ‘belongs’ to a national Web if it bears or represents identities from a particular country. Using the national domain such as .ae, .uk, as primary identifier and IP address, geographic locations, and language as augmented/secondary identifiers is no longer adequate. We propose a two-step Web page classifier (1) pre-crawl filter and (2) post-crawl filter. The former stage prunes out Web pages not belonging to the nation under investigation before fetching/downloading a Web page while the later stage filters irrelevant ones through a multiple-step analysis after downloading a page. We used the United Arab Emirates (UAE) national Web as a case study. We share our experience crawling the national Web, introduce the crawler designed to accomplish the task, and present some of our results and findings.
用两步过滤器描述阿联酋国家网络
Web是围绕分层域系统组织的大量页面集合。对于搜索、分析或其他目的,从中选择一个子集是一个具有挑战性的问题。在本文中,我们解决了将与国家相关的页面确定为子集的问题。如果一个网页带有或代表一个特定国家的身份,那么它就“属于”一个国家的网页。使用国家域(如.ae、.uk)作为主要标识符,使用IP地址、地理位置和语言作为增强/辅助标识符已经不够了。我们提出了一个两步网页分类器(1)预抓取过滤器和(2)后抓取过滤器。前一阶段是在获取/下载网页之前,清除不属于被调查国家的网页;后一阶段是在下载网页后,通过多步分析,过滤不相关的网页。我们使用阿拉伯联合酋长国(UAE)国家Web作为案例研究。我们分享我们在国家网络上爬行的经验,介绍为完成任务而设计的爬行器,并且呈现我们的一些结果和发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信