Surface EMG signals pattern recognition utilizing an adaptive crosstalk suppression preprocessor

K. Nazarpour
{"title":"Surface EMG signals pattern recognition utilizing an adaptive crosstalk suppression preprocessor","authors":"K. Nazarpour","doi":"10.1109/CIMA.2005.1662327","DOIUrl":null,"url":null,"abstract":"This paper proposes utilization of a least mean square (LMS) based finite impulse response (FIR) adaptive filter block, before conventional surface electromyogram (sEMG) signal pattern classification schemes. This novel configuration suppresses the sEMG between channels crosstalk. In this study, the sEMG signals are detected from the biceps and triceps brachii muscles to identify four primitive motions, i.e., elbow flexion/extension and forearm supination/pronation. A multi layer perceptron (MLP) classifies the two time domain feature vectors that are extracted from raw and preprocessed sEMG signals, respectively. Although the implementation of an adaptive filter increases computational complexity, significant advances in sEMG pattern classification has been achieved","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes utilization of a least mean square (LMS) based finite impulse response (FIR) adaptive filter block, before conventional surface electromyogram (sEMG) signal pattern classification schemes. This novel configuration suppresses the sEMG between channels crosstalk. In this study, the sEMG signals are detected from the biceps and triceps brachii muscles to identify four primitive motions, i.e., elbow flexion/extension and forearm supination/pronation. A multi layer perceptron (MLP) classifies the two time domain feature vectors that are extracted from raw and preprocessed sEMG signals, respectively. Although the implementation of an adaptive filter increases computational complexity, significant advances in sEMG pattern classification has been achieved
利用自适应串扰抑制预处理的表面肌电信号模式识别
在传统的表面肌电信号模式分类方案之前,提出了基于最小均方(LMS)的有限脉冲响应(FIR)自适应滤波块。这种新颖的结构抑制了通道间串扰的表面肌电信号。在本研究中,通过检测肱二头肌和肱三头肌的肌电信号来识别四种原始运动,即肘关节屈伸和前臂旋前/旋前。多层感知器(MLP)分别对从原始和预处理的表面肌电信号中提取的两个时域特征向量进行分类。尽管自适应滤波器的实现增加了计算复杂度,但在表面肌电信号模式分类方面取得了重大进展
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信