Efficient Runtime Profiling for Black-box Machine Learning Services on Sensor Streams

Soeren Becker, Dominik Scheinert, Florian Schmidt, O. Kao
{"title":"Efficient Runtime Profiling for Black-box Machine Learning Services on Sensor Streams","authors":"Soeren Becker, Dominik Scheinert, Florian Schmidt, O. Kao","doi":"10.48550/arXiv.2203.05362","DOIUrl":null,"url":null,"abstract":"In highly distributed environments such as cloud, edge and fog computing, the application of machine learning for automating and optimizing processes is on the rise. Machine learning jobs are frequently applied in streaming conditions, where models are used to analyze data streams originating from e.g. sensory data. Often the results for particular data samples need to be provided in time before the arrival of next data. Thus, enough resources must be provided to ensure the just-in-time processing for the specific data stream.This paper focuses on proposing a runtime modeling strategy for containerized machine learning jobs, which enables the optimization and adaptive adjustment of resources per job and component. Our black-box approach assembles multiple techniques into an efficient runtime profiling method, while making no assumptions about underlying hardware, data streams, or applied machine learning jobs. The results show that our method is able to capture the general runtime behaviour of different machine learning jobs already after a short profiling phase.","PeriodicalId":423599,"journal":{"name":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 6th International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.05362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In highly distributed environments such as cloud, edge and fog computing, the application of machine learning for automating and optimizing processes is on the rise. Machine learning jobs are frequently applied in streaming conditions, where models are used to analyze data streams originating from e.g. sensory data. Often the results for particular data samples need to be provided in time before the arrival of next data. Thus, enough resources must be provided to ensure the just-in-time processing for the specific data stream.This paper focuses on proposing a runtime modeling strategy for containerized machine learning jobs, which enables the optimization and adaptive adjustment of resources per job and component. Our black-box approach assembles multiple techniques into an efficient runtime profiling method, while making no assumptions about underlying hardware, data streams, or applied machine learning jobs. The results show that our method is able to capture the general runtime behaviour of different machine learning jobs already after a short profiling phase.
传感器流上黑盒机器学习服务的高效运行时分析
在云计算、边缘计算和雾计算等高度分布式环境中,机器学习用于自动化和优化流程的应用正在兴起。机器学习工作经常应用于流条件,其中模型用于分析源自例如感官数据的数据流。通常需要在下一个数据到达之前及时提供特定数据样本的结果。因此,必须提供足够的资源来确保对特定数据流进行及时处理。本文重点提出了一种容器化机器学习作业的运行时建模策略,该策略可以实现每个作业和组件资源的优化和自适应调整。我们的黑盒方法将多种技术组装成一种高效的运行时分析方法,同时不假设底层硬件、数据流或应用机器学习作业。结果表明,我们的方法能够在短暂的分析阶段后捕获不同机器学习作业的一般运行时行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信