Cristian Muoz Villalobos, Leonardo Mendoza Forero, Harold De Mello, Cesar Valencia, Alvaro Orjuela, R. Tanscheit, Marco Pacheco Cavalcanti
{"title":"Sentimental Analysis on Social Media Comments with Recurring Models and Pretrained Word Embeddings in Portuguese","authors":"Cristian Muoz Villalobos, Leonardo Mendoza Forero, Harold De Mello, Cesar Valencia, Alvaro Orjuela, R. Tanscheit, Marco Pacheco Cavalcanti","doi":"10.1145/3582768.3582805","DOIUrl":null,"url":null,"abstract":"Natural Language Processing (NLP) techniques are increasingly powerful for interpreting a person’s feelings and reaction to a product or service. Sentiment analysis has become a fundamental tool for this interpretation, and it has studies in languages other than English. This type of application is uncommon and unheard of in Portuguese. This article presents a sentiment analysis classification based on Portuguese social media comments. Representation of word embeddings with both pre-trained Glove and Word2Vec models were generated through a corpus entirely in Portuguese. This article presents a set of results with different models of pre-trained layers and deep learning models exclusive to the Portuguese language on social networks. Two classification models were used and compared: (i) Bidirectional Long Short-Term Memory (BI-LSTM) and (ii) Bidirectional Gated Recurrent Unit (BI-GRU), achieving accuracy results of 99.1","PeriodicalId":315721,"journal":{"name":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Natural Language Processing and Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3582768.3582805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Natural Language Processing (NLP) techniques are increasingly powerful for interpreting a person’s feelings and reaction to a product or service. Sentiment analysis has become a fundamental tool for this interpretation, and it has studies in languages other than English. This type of application is uncommon and unheard of in Portuguese. This article presents a sentiment analysis classification based on Portuguese social media comments. Representation of word embeddings with both pre-trained Glove and Word2Vec models were generated through a corpus entirely in Portuguese. This article presents a set of results with different models of pre-trained layers and deep learning models exclusive to the Portuguese language on social networks. Two classification models were used and compared: (i) Bidirectional Long Short-Term Memory (BI-LSTM) and (ii) Bidirectional Gated Recurrent Unit (BI-GRU), achieving accuracy results of 99.1