Stochastic Differential Equations

T. Björk
{"title":"Stochastic Differential Equations","authors":"T. Björk","doi":"10.1093/oso/9780198851615.003.0005","DOIUrl":null,"url":null,"abstract":"In this chapter we introduce stochastic differential equations (SDEs) and discuss existence and uniqueness questions. The geometric and linear equations are studied in some detail and their most important properties are derived. We then discuss the connection between SDEs and partial differential equations (PDEs). In particular we prove the Feynman–Kač representation theorem which provides the solution to a parabolic PDE in terms of an expected value connected to a certain SDE. We also discuss and derive the Kolmogorov forward and backward equations.","PeriodicalId":311283,"journal":{"name":"Arbitrage Theory in Continuous Time","volume":"38 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arbitrage Theory in Continuous Time","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198851615.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this chapter we introduce stochastic differential equations (SDEs) and discuss existence and uniqueness questions. The geometric and linear equations are studied in some detail and their most important properties are derived. We then discuss the connection between SDEs and partial differential equations (PDEs). In particular we prove the Feynman–Kač representation theorem which provides the solution to a parabolic PDE in terms of an expected value connected to a certain SDE. We also discuss and derive the Kolmogorov forward and backward equations.
随机微分方程
在这一章中,我们介绍了随机微分方程(SDEs),并讨论了存在唯一性问题。对几何方程和线性方程进行了详细的研究,并给出了它们最重要的性质。然后我们讨论了偏微分方程与偏微分方程之间的联系。特别地,我们证明了feynman - kaki表示定理,该定理给出了抛物线型PDE的期望值与某一SDE的联系的解。我们还讨论并推导了Kolmogorov正反向方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信