Kotikalapudi Vamsi Krishna, Navuluri Sainath, A. Posonia
{"title":"Speech Emotion Recognition using Machine Learning","authors":"Kotikalapudi Vamsi Krishna, Navuluri Sainath, A. Posonia","doi":"10.1109/ICCMC53470.2022.9753976","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to detect the emotions which are elicited by the speaker while speaking. Emotion Detection has become a essential task these days. The speech which is in fear, anger, joy have higher and wider range in pitch whereas have low range in pitch. Detection of speech is useful in assisting human machine interactions. Here we are using different classification algorithms to recognize the emotions , Support Vector Machine , Multi layer perception, and the audio feature MFCC, MEL, chroma, Tonnetz were used. These models have been trained to recognize these emotions (Calm, neutral, surprise, happy, sad, angry, fearful, disgust). We got an accuracy of 86.5% and testing it with the input audio we get the same.","PeriodicalId":345346,"journal":{"name":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC53470.2022.9753976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of the paper is to detect the emotions which are elicited by the speaker while speaking. Emotion Detection has become a essential task these days. The speech which is in fear, anger, joy have higher and wider range in pitch whereas have low range in pitch. Detection of speech is useful in assisting human machine interactions. Here we are using different classification algorithms to recognize the emotions , Support Vector Machine , Multi layer perception, and the audio feature MFCC, MEL, chroma, Tonnetz were used. These models have been trained to recognize these emotions (Calm, neutral, surprise, happy, sad, angry, fearful, disgust). We got an accuracy of 86.5% and testing it with the input audio we get the same.