Online Naive Bayes classification for network intrusion detection

Fatma Gumus, C. O. Sakar, Z. Erdem, Olcay Kursun
{"title":"Online Naive Bayes classification for network intrusion detection","authors":"Fatma Gumus, C. O. Sakar, Z. Erdem, Olcay Kursun","doi":"10.1109/ASONAM.2014.6921657","DOIUrl":null,"url":null,"abstract":"Intrusion detection system (IDS) is an important component to ensure network security. In this paper we build an online Naïve Bayes classifier to discriminate normal and bad (intrusion) connections on KDD 99 dataset for network intrusion detection. The classifier starts with a small number of training examples of normal and bad classes; then, as it classifies the rest of the samples one at a time, it continuously updates the mean and the standard deviations of the features (IDS variables). We present experimental results of parameter updating methods and their parameters for the online Naïve Bayes classifier. The obtained results show that our proposed method performs comparably to the simple incremental update.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

Intrusion detection system (IDS) is an important component to ensure network security. In this paper we build an online Naïve Bayes classifier to discriminate normal and bad (intrusion) connections on KDD 99 dataset for network intrusion detection. The classifier starts with a small number of training examples of normal and bad classes; then, as it classifies the rest of the samples one at a time, it continuously updates the mean and the standard deviations of the features (IDS variables). We present experimental results of parameter updating methods and their parameters for the online Naïve Bayes classifier. The obtained results show that our proposed method performs comparably to the simple incremental update.
基于在线朴素贝叶斯分类的网络入侵检测
入侵检测系统(IDS)是保证网络安全的重要组成部分。在本文中,我们建立了一个在线Naïve贝叶斯分类器来区分KDD 99数据集上的正常和不良(入侵)连接,用于网络入侵检测。分类器从少量正常类和坏类的训练样例开始;然后,当它一次一个地对剩余的样本进行分类时,它会不断更新特征(IDS变量)的平均值和标准差。给出了在线Naïve贝叶斯分类器参数更新方法及其参数的实验结果。结果表明,该方法与简单的增量更新方法性能相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信