Efficient Distributed Algorithms for Minimum Spanning Tree in Dense Graphs

M. Bateni, Morteza Monemizadeh, Kees Voorintholt
{"title":"Efficient Distributed Algorithms for Minimum Spanning Tree in Dense Graphs","authors":"M. Bateni, Morteza Monemizadeh, Kees Voorintholt","doi":"10.1109/ICDMW58026.2022.00106","DOIUrl":null,"url":null,"abstract":"In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data analysis, given the ubiquity of efficient and affordable cloud implementations. In this model, an input of size $m$ is initially distributed among $t$ machines, each with a local space of size $s$. Computation proceeds in synchronous rounds in which each machine performs arbitrary local computation on its data and then sends messages to other machines. In this paper, we study the Minimum Spanning Tree (MST) problem for dense graphs in the MPC model. We say a graph $G(V,\\ E)$ is relatively dense if $m=\\Theta(n^{1+c})$ where $n=\\vert V\\vert$ is the number of vertices, $m=\\vert E\\vert$ is the number of edges in this graph, and $0 < c\\leq 1$. We develop the first work- and space-efficient MPC algorithm that with high probability computes an MST of $G$ using $\\lceil\\log\\frac{c}{\\epsilon}\\rceil+1$ rounds of communication. As an MPC algorithm, our algorithm uses $t=O(n^{c-\\epsilon})$ machines each one having local storage of size $s=O(n^{1+\\epsilon})$ for any $0 < \\epsilon\\leq c$. Indeed, not only is this algorithm very simple and easy to implement, it also simultaneously achieves optimal total work, per-machine space, and number of rounds.","PeriodicalId":146687,"journal":{"name":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW58026.2022.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the Massively Parallel Computation (MPC) model capturing the MapReduce framework has become the de facto standard model for large-scale data analysis, given the ubiquity of efficient and affordable cloud implementations. In this model, an input of size $m$ is initially distributed among $t$ machines, each with a local space of size $s$. Computation proceeds in synchronous rounds in which each machine performs arbitrary local computation on its data and then sends messages to other machines. In this paper, we study the Minimum Spanning Tree (MST) problem for dense graphs in the MPC model. We say a graph $G(V,\ E)$ is relatively dense if $m=\Theta(n^{1+c})$ where $n=\vert V\vert$ is the number of vertices, $m=\vert E\vert$ is the number of edges in this graph, and $0 < c\leq 1$. We develop the first work- and space-efficient MPC algorithm that with high probability computes an MST of $G$ using $\lceil\log\frac{c}{\epsilon}\rceil+1$ rounds of communication. As an MPC algorithm, our algorithm uses $t=O(n^{c-\epsilon})$ machines each one having local storage of size $s=O(n^{1+\epsilon})$ for any $0 < \epsilon\leq c$. Indeed, not only is this algorithm very simple and easy to implement, it also simultaneously achieves optimal total work, per-machine space, and number of rounds.
密集图中最小生成树的高效分布式算法
近年来,大规模并行计算(MPC)模型捕获MapReduce框架已经成为大规模数据分析事实上的标准模型,考虑到高效和负担得起的云实现无处不在。在该模型中,大小为$m$的输入初始分布在$t$台机器上,每台机器的局部空间大小为$s$。计算以同步轮进行,每台机器对其数据执行任意本地计算,然后向其他机器发送消息。本文研究了MPC模型中密集图的最小生成树(MST)问题。我们说一个图$G(V,\ E)$是相对密集的,如果$m=\Theta(n^{1+c})$$n=\vert V\vert$是顶点的数量,$m=\vert E\vert$是这个图的边的数量,$0 < c\leq 1$。我们开发了第一个工作和空间效率高的MPC算法,该算法使用$\lceil\log\frac{c}{\epsilon}\rceil+1$轮通信以高概率计算出$G$的MST。作为MPC算法,我们的算法使用$t=O(n^{c-\epsilon})$机器,每台机器的本地存储大小为$s=O(n^{1+\epsilon})$,用于任何$0 < \epsilon\leq c$。实际上,该算法不仅非常简单且易于实现,而且还同时实现了最优的总工作量、每台机器的空间和轮数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信