A dynamically evolving learning network for intelligent control

J. R. Crosscope, R. Bonnell
{"title":"A dynamically evolving learning network for intelligent control","authors":"J. R. Crosscope, R. Bonnell","doi":"10.1109/ISIC.1988.65487","DOIUrl":null,"url":null,"abstract":"A variation on the adaptive learning network (ALN), which is used for dynamic system identification is discussed. The dynamically evolving ALN (DEALN) is self-organizing and operates online to generate a model of a dynamic plant. The network evolves the necessary structure and parameter values to mimic and predict the plant to within a specified tolerance. An intelligent controller can use the DEALN to simulate the plant, perform diagnoses, and plan coarse and fine control strategies. A high-level intelligent planner can also generate and program lower-level control laws to be implemented by the network, much as a human automates a skill. Results of an initial implementation which indicate that an online self-structuring learning network can be developed are presented.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A variation on the adaptive learning network (ALN), which is used for dynamic system identification is discussed. The dynamically evolving ALN (DEALN) is self-organizing and operates online to generate a model of a dynamic plant. The network evolves the necessary structure and parameter values to mimic and predict the plant to within a specified tolerance. An intelligent controller can use the DEALN to simulate the plant, perform diagnoses, and plan coarse and fine control strategies. A high-level intelligent planner can also generate and program lower-level control laws to be implemented by the network, much as a human automates a skill. Results of an initial implementation which indicate that an online self-structuring learning network can be developed are presented.<>
面向智能控制的动态进化学习网络
讨论了用于动态系统辨识的自适应学习网络(ALN)的一种变体。动态进化的神经网络(DEALN)是自组织的,并在线运行以生成动态工厂的模型。网络进化出必要的结构和参数值来模拟和预测在指定公差范围内的植物。智能控制器可以使用DEALN对被控对象进行仿真,进行诊断,并规划粗、精控制策略。高级智能规划器还可以生成和编程由网络实现的低级控制律,就像人类将一项技能自动化一样。初步实现的结果表明,在线自结构学习网络是可以开发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信