TileSpMSpV: A Tiled Algorithm for Sparse Matrix-Sparse Vector Multiplication on GPUs

H. Ji, Huimin Song, Shibo Lu, Zhou Jin, Guangming Tan, Weifeng Liu
{"title":"TileSpMSpV: A Tiled Algorithm for Sparse Matrix-Sparse Vector Multiplication on GPUs","authors":"H. Ji, Huimin Song, Shibo Lu, Zhou Jin, Guangming Tan, Weifeng Liu","doi":"10.1145/3545008.3545028","DOIUrl":null,"url":null,"abstract":"Sparse matrix-sparse vector multiplication (SpMSpV) is an important primitive for graph algorithms and machine learning applications. The sparsity of the input and output vectors makes its floating point efficiency in general lower than sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpGEMM). Existing parallel SpMSpV methods focused on various row- and column-wise storage formats and merging operations. However, the data locality and sparsity pattern of the input matrix and vector are largely ignored. We in this paper propose TileSpMSpV, a tiled algorithm for accelerating SpMSpV on GPUs. Firstly, tile-wise storage structures are developed for fast positioning a group of nonzeros in matrix and vectors. Then, we develop the TileSpMSpV algorithm on top of the storage structures. In addition, to accelerate directional optimization breadth-first search (BFS) by using TileSpMSpV, we propose a TileBFS algorithm including three kernels called Push-CSC, Push-CSR and Pull-CSC. In the experiments running on a high-end NVIDIA GPU and using 2757 sparse matrices, the TileSpMSpV algorithm outperforms TileSpMV, cuSPARSE and CombBLAS by a factor of on average 1.83, 17.18 and 17.20 (up to 7.68, 1050.02 and 235.90), respectively. Moreover, our TileBFS algorithm outperforms Gunrock and GSwitch by a factor of on average 2.88 and 4.52 (up to 21.35 and 1000.85), respectively.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Sparse matrix-sparse vector multiplication (SpMSpV) is an important primitive for graph algorithms and machine learning applications. The sparsity of the input and output vectors makes its floating point efficiency in general lower than sparse matrix-vector multiplication (SpMV) and sparse matrix-matrix multiplication (SpGEMM). Existing parallel SpMSpV methods focused on various row- and column-wise storage formats and merging operations. However, the data locality and sparsity pattern of the input matrix and vector are largely ignored. We in this paper propose TileSpMSpV, a tiled algorithm for accelerating SpMSpV on GPUs. Firstly, tile-wise storage structures are developed for fast positioning a group of nonzeros in matrix and vectors. Then, we develop the TileSpMSpV algorithm on top of the storage structures. In addition, to accelerate directional optimization breadth-first search (BFS) by using TileSpMSpV, we propose a TileBFS algorithm including three kernels called Push-CSC, Push-CSR and Pull-CSC. In the experiments running on a high-end NVIDIA GPU and using 2757 sparse matrices, the TileSpMSpV algorithm outperforms TileSpMV, cuSPARSE and CombBLAS by a factor of on average 1.83, 17.18 and 17.20 (up to 7.68, 1050.02 and 235.90), respectively. Moreover, our TileBFS algorithm outperforms Gunrock and GSwitch by a factor of on average 2.88 and 4.52 (up to 21.35 and 1000.85), respectively.
TileSpMSpV: gpu上稀疏矩阵-稀疏向量乘法的平铺算法
稀疏矩阵-稀疏向量乘法(SpMSpV)是图算法和机器学习应用的重要原语。输入和输出向量的稀疏性使得其浮点效率一般低于稀疏矩阵-向量乘法(SpMV)和稀疏矩阵-矩阵乘法(SpGEMM)。现有的并行SpMSpV方法侧重于各种逐行和逐列的存储格式以及合并操作。然而,输入矩阵和向量的数据局部性和稀疏性模式在很大程度上被忽略了。本文提出了一种在gpu上加速SpMSpV的平铺算法TileSpMSpV。首先,为了快速定位矩阵和向量中的一组非零,开发了分层存储结构。然后,我们在存储结构的基础上开发了TileSpMSpV算法。此外,为了利用TileSpMSpV加速定向优化宽度优先搜索(BFS),我们提出了一种包含Push-CSC、Push-CSR和Pull-CSC三个内核的TileSpMSpV算法。在高端NVIDIA GPU上运行的实验中,使用2757个稀疏矩阵,TileSpMSpV算法比TileSpMV、cuSPARSE和CombBLAS算法的平均性能分别高出1.83、17.18和17.20倍(最高可达7.68、1050.02和235.90)。此外,我们的TileBFS算法比Gunrock和GSwitch的平均性能分别高出2.88和4.52倍(最高21.35和1000.85)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信