{"title":"Implementing tactile behaviors using FingerVision","authors":"Akihiko Yamaguchi, C. Atkeson","doi":"10.1109/HUMANOIDS.2017.8246881","DOIUrl":null,"url":null,"abstract":"We explore manipulation strategies that use vision-based tactile sensing. FingerVision is a vision-based tactile sensor that provides rich tactile sensation as well as proximity sensing. Although many other tactile sensing methods are expensive in terms of cost and/or processing, FingerVision is a simple and inexpensive approach. We use a transparent skin for fingers. Tracking markers placed on the skin provides contact force and torque estimates, and processing images obtained by seeing through the transparent skin provides static (pose, shape) and dynamic (slip, deformation) information. FingerVision can sense nearby objects even when there is no contact since it is vision-based. Also the slip detection is independent from contact force, which is effective even when the force is too small to measure, such as with origami objects. The results of experiments demonstrate that several manipulation strategies with FingerVision are effective. For example the robot can grasp and pick up an origami crane without crushing it. Video: https://youtu.be/L-YbxcyRghQ","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77
Abstract
We explore manipulation strategies that use vision-based tactile sensing. FingerVision is a vision-based tactile sensor that provides rich tactile sensation as well as proximity sensing. Although many other tactile sensing methods are expensive in terms of cost and/or processing, FingerVision is a simple and inexpensive approach. We use a transparent skin for fingers. Tracking markers placed on the skin provides contact force and torque estimates, and processing images obtained by seeing through the transparent skin provides static (pose, shape) and dynamic (slip, deformation) information. FingerVision can sense nearby objects even when there is no contact since it is vision-based. Also the slip detection is independent from contact force, which is effective even when the force is too small to measure, such as with origami objects. The results of experiments demonstrate that several manipulation strategies with FingerVision are effective. For example the robot can grasp and pick up an origami crane without crushing it. Video: https://youtu.be/L-YbxcyRghQ