Fuzzy-based Error Correction Mechanism to Improve the Precision of Intelligent Maneuvering Target Tracking

Tsung-Ying Sun, Shang-Jeng Tsai, Chun-Hung Chen, Shan-Ming Yang
{"title":"Fuzzy-based Error Correction Mechanism to Improve the Precision of Intelligent Maneuvering Target Tracking","authors":"Tsung-Ying Sun, Shang-Jeng Tsai, Chun-Hung Chen, Shan-Ming Yang","doi":"10.1109/IRI.2006.252383","DOIUrl":null,"url":null,"abstract":"This paper proposes a fuzzy-based error correction mechanism (FECM) to improve the precision of an online data-driven fuzzy clustering (ODDFC) used in the maneuvering target tracking and trajectory prediction. In the ODDFC, the observed data are extracted automatically by fuzzy inference mechanism without much computation and training costs. But the improvement performance of ODDFC is slightly due to its parameters limitation and the prediction accuracy can be affected by the trajectory's curvature of moving target. So we propose ODDFC with FECM to solve the problem. In the proposed method, we use fuzzy inference system that has error correction mechanism to reduce the prediction error of ODDFC. ODDFC with FECM can predict maneuvering targets adapt quickly and have better prediction performance than ODDFC. Simulation results show that proposed method can improve the performance of ODDFC","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a fuzzy-based error correction mechanism (FECM) to improve the precision of an online data-driven fuzzy clustering (ODDFC) used in the maneuvering target tracking and trajectory prediction. In the ODDFC, the observed data are extracted automatically by fuzzy inference mechanism without much computation and training costs. But the improvement performance of ODDFC is slightly due to its parameters limitation and the prediction accuracy can be affected by the trajectory's curvature of moving target. So we propose ODDFC with FECM to solve the problem. In the proposed method, we use fuzzy inference system that has error correction mechanism to reduce the prediction error of ODDFC. ODDFC with FECM can predict maneuvering targets adapt quickly and have better prediction performance than ODDFC. Simulation results show that proposed method can improve the performance of ODDFC
基于模糊的纠错机制提高智能机动目标跟踪精度
为了提高在线数据驱动模糊聚类(ODDFC)在机动目标跟踪和轨迹预测中的精度,提出了一种基于模糊的纠错机制(FECM)。在ODDFC中,观测数据通过模糊推理机制自动提取,无需大量的计算和训练成本。但由于ODDFC的参数限制和运动目标轨迹曲率对预测精度的影响,其改进效果略有下降。因此,我们提出ODDFC + FECM来解决这个问题。在该方法中,我们使用带有纠错机制的模糊推理系统来降低ODDFC的预测误差。基于FECM的ODDFC预测机动目标适应速度快,预测性能优于ODDFC。仿真结果表明,该方法可以提高ODDFC的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信