Feedback Memetic Algorithms for Modeling Gene Regulatory Networks

C. Spieth, F. Streichert, J. Supper, N. Speer, A. Zell
{"title":"Feedback Memetic Algorithms for Modeling Gene Regulatory Networks","authors":"C. Spieth, F. Streichert, J. Supper, N. Speer, A. Zell","doi":"10.1109/CIBCB.2005.1594899","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of finding gene regulatory networks from experimental DNA microarray data. We focus on the evaluation of the performance of memetic algorithms on the inference problem. These algorithms are used to evolve an underlying quantitative mathematical model. The dynamics of the regulatory system are modeled with two commonly used approaches, namely linear weight matrices and S-systems. Due to the complexity of the inference problem, some researchers suggested evolutionary algorithms for this purpose. We introduce memetic enhancements to this optimization process to infer the parameters of sparsely connected nonlinear systems from the observed data. Due to the limited number of available data, the inferring problem is underdetermined and ambiguous. Further on, the problem often is multimodal and therefore appropriate optimization strategies become necessary. We propose a memetic method, which separates the overall inference problem into two subproblems to find the correct network: first, the search for a valid topology, and secondly, the optimization of the parameters of the mathematical model. The performance and the properties of the proposed methods are evaluated and compared to standard algorithms found in the literature.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper we address the problem of finding gene regulatory networks from experimental DNA microarray data. We focus on the evaluation of the performance of memetic algorithms on the inference problem. These algorithms are used to evolve an underlying quantitative mathematical model. The dynamics of the regulatory system are modeled with two commonly used approaches, namely linear weight matrices and S-systems. Due to the complexity of the inference problem, some researchers suggested evolutionary algorithms for this purpose. We introduce memetic enhancements to this optimization process to infer the parameters of sparsely connected nonlinear systems from the observed data. Due to the limited number of available data, the inferring problem is underdetermined and ambiguous. Further on, the problem often is multimodal and therefore appropriate optimization strategies become necessary. We propose a memetic method, which separates the overall inference problem into two subproblems to find the correct network: first, the search for a valid topology, and secondly, the optimization of the parameters of the mathematical model. The performance and the properties of the proposed methods are evaluated and compared to standard algorithms found in the literature.
基因调控网络建模的反馈模因算法
在本文中,我们解决了从实验DNA微阵列数据中寻找基因调控网络的问题。我们着重于模因算法在推理问题上的性能评价。这些算法被用来发展一个潜在的定量数学模型。用两种常用的方法,即线性权矩阵和s系统来建模调节系统的动力学。由于推理问题的复杂性,一些研究人员提出了进化算法来解决这个问题。我们在优化过程中引入模因增强,从观测数据中推断稀疏连接非线性系统的参数。由于可用数据的数量有限,推理问题是不确定的和模糊的。此外,问题往往是多模态的,因此适当的优化策略是必要的。我们提出了一种模因方法,将整体推理问题分解为两个子问题来寻找正确的网络:首先,寻找有效的拓扑结构,其次,优化数学模型的参数。对所提出方法的性能和特性进行了评估,并与文献中发现的标准算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信